Feature Requirements Models:
Understanding Interactions

J. Paul Gibson, CRIN, Nancy, France', gibson@loria.fr

Abstract

This paper states that many of the problems which arise when features
combine (i.e. feature interactions) are due to badly developed requirements
models for individual features. With sufficiently good requirements models,
in which each feature is formally modelled and validated against customer
understanding, the feature interaction problem is much more tractable. We
analyse some of the standard feature interactions and show that, in most
cases, the notion of interaction is used to signify that the requirements are
not fully understood, properly recorded or rigorously validated. In contrast,
we then show how good requirements models could resolve the problems that
arise when combining features. An interaction is said to occur if and only
if requirements are contradictory. The problem which this paper addresses
i1s how to avoid, detect and resolve such contradictions during requirements
development.

1 Introduction

The feature interaction problem is stated simply, and informally, as follows: A feature
interaction is a situation in which system behaviour (specified as some set of features?)
does not as a whole satisfy each of its component features individually. We concentrate
on the domain of telephone features [4, 2]. Figure 1 illustrates this definition within the
formal framework which we adopt throughout this paper. Two types of formal models
are used. Firstly, we require an executable model (written in LOTOS [12] with an
object based style [10]) which is useful for validating the dynamic behaviour. Secondly,
we have a logical model (using a mixture of TLA [14] and PVS [15]) which defines a
set of properties that can be validated statically. Then, we have a formal verification
that the executable model fulfils the requirements of the static model.

The argument put forward in this paper is as follows. Feature interaction is a difficult
problem (see section 1.2) made more difficult by the fact that feature combinations
cannot be fully understood when individual features are themselves not understood.
Formal requirements modeling [13] is the triangular process of gaining understanding,
recording understanding in a formal model, and validating the model. By formally
developing feature requirements models we can approach the problem of combining
features with much more confidence. The problem is still as difficult, but at least it is
now well defined. We argue (in section 1.1) that improving understanding is the key to
interaction avoidance, detection and resolution.

1.1 Requirements Modeling: An QOuverview

Requirements capture is the first step in the process of meeting customer needs.
Building and analysing a model of customer needs, with the intention of passing the
result of such a process to system designers, is the least well understood aspect of
software engineering. The process is required to fulfil two very different needs: The
customer must be convinced that requirements are completely understood and recorded,
and the designer must be able to use the requirements to produce a structure around
which an implementation can be developed and tested. However, the process is made

!Supported by contract 96-1B CNET-France-Telecom & CRIN-CNRS URA262.

?Tn this paper we make no distinction between a feature and a service.

Feature 1

animator eaturel with Featur
(imator)) Featurel with Feature2
’ /In;)rmal\ N= ynemie valigeon, fn%@é’l" ()
\ Requirements) F1 Model F12
~ _ - Feature Properties list
/I_ " Combination @ P12 =
| property list P1=
— — —>| P11,..,PIn
sttic validation verification @ Pi1,..., Pin
~ / P21, ..., P2m
Feature 2
e (animetor) N verification -
RN dynamic validation_ / formal N g
/" Informal T model
\ \Requirement/s) F2 flﬂter_actﬂ)n_D efinion ___ _
- | Interact(FLF2) iff !
I | F1satisifesPL and I
I property list P2= F2 satisfies P2 and |
— — —>| P21,..P2n A
_ sitic validation verification) oz satisfies(P12) !

Figure 1: Feature Interaction: A formalisation

easier by the fact that many of the same principles of structure, organisation and method
are common to both the problem domains and solution domains. The fundamental
principle of requirements capture is the improvement of mutual understanding between
customer and analyst and the recording of such an understanding in a structured model.

1.2 Feature Interaction: What’s different?

Features are observable behaviour and are therefore a requirements specification prob-
lem [17]. Most feature interaction problems can be (and should be) resolved at the
requirements capture stage of development. If there are no problems in the require-
ments specification then problems during the design and implementation will arise only
through errors in the refinement process. Certainly the feature interaction problem is
more prone to the introduction of such errors because of the highly concurrent and
distributed nature of the underlying implementation domain, but this is for consider-
ation after each individual feature’s requirements have been modelled and validated;
otherwise it will not be easy to identify the source of the interaction. Features are
requirements modules and the units of incrementation as systems evolve. A telecom
system is a set of features. A feature interaction occurs in a system whose complete
behaviour does not satisfy the separate specifications of all its features. Having features
as the incremental units of development is the source of our complexity:

e Complexity explosion: Potential feature interactions increase exponentially with
the number of features in the system.

e Chaotic Information Structure In Sequential Development Strategies: The ar-
bitrary sequential ordering of feature development is what drives the internal
structure of the resulting system. As each new feature is added the feature must
include details of how it is to interact with all the features already in the system.
Consequently, to understand the behaviour of one feature, it is necessary to ex-
amine the specification of all the features in the system. All conceptual integrity
is lost since the distribution of knowledge is chaotic. The arbitrary ordering of
feature development has a large effect on the internal system structure.

e Assumption Problem: Already developed features often rely on assumptions which

are no longer true when later features are conceived. Consequently, features may
rely on contradictory assumptions.

e Independent Development: Traditional approaches require a new feature devel-
oper to consider how the feature operates with all others already on the system.
Consequently, we cannot concurrently develop new features: since how the new
features work together will not be considered by either of the two independent
feature developers. We want to have an incremental approach in which the devel-
opers do not need to know anything about the other features in the system. In
our approach, it is the system designers who must resolve the integration prob-
lems: integration methods arise from an analysis of the features to be integrated.
Formal requirements of individual features are required for the integration process
to be verified.

o Interface Problem: User controls on traditional phones are very limited and hence
the input signals become polymorphic. This is a major problem in requirements
specifications as it can lead to the introduction of ambiguities in systems of fea-
tures. Formal requirements models make explicit the mapping between abstract
and concrete actions and our systems can be automatically verified to ensure an
absence of ambiguity that could lead to interactions.

e Invalid Plain Old Telephone Service (POTS) Assumptions: Phone systems have
changed dramatically over the past ten years. Many people (including feature
developers) are not aware of the underlying complexity in the concrete system
and, as a way of simplifying the problem, often make incorrect assumptions based
on their knowledge of the plain old telephone service.

The feature interaction problem is difficult: having formal requirements models makes
it manageable.

1.3 Formal Methods

A formal model of requirements is unambiguous — there is only one correct way to
interpret the behaviour being defined. Although the model must still be mapped onto
the real world (i.e. validated by the customer), this mapping is in essence more rigorous
than in informal approaches. Building a formal model requires a better understanding
of the problem domain and a better understanding of how the problem domain is viewed
by the customer. A formal model can explicitly model nondeterminism, when choice
of behaviour is specified. Another advantage of a mathematical approach is that high
levels of expressibility allow the definition of what rather than how.

In our formal approach, interactions occur only when requirements of multiple fea-
tures are contradictory. The complexity of understanding the problem is thus contained
within a definition of contradiction in our semantic framework. We shall show that in
most of the feature interaction examples found in published texts, there is no formal
definition of feature interaction. In fact, most of the interactions which we studied (see
section 3) correspond to incomplete and informal requirements models. In other words,
if the features were modelled better then we would be able to better understand what
is and what isn’t an interaction.

2 Understanding Features: formalising requirements

As an aid to comprehension we limit our study to interactions which deal only with the

caller’s point of view. We also restrict our level of abstraction: problems due to sharing
of resources, information hiding, interface realisation, etc ...are design issues and are
not examined here. The key to understanding features is the language(s) we employ
for communication, verification and validation. Three different, though complementary,
views of features play a role in the process of requirements capture. Before we examine
specific interaction cases, we summarise the different semantic views and use them to
model the POTS requirements of a single phone.

2.1 States and Actions: A dynamic (object) view

Labelled state transition systems are often used to provide executable models during
the analysis and requirements stages of software development [7, 8]. In particular, such
models play a role in many of the object oriented analysis and design methods [1, 6].
However, a major problem with state models is that it can be difficult to provide a
good decomposition of large, complex systems when the underlying state and state
transitions are not fully understood. The object oriented® paradigm provides a natural
solution to this problem. By equating the notion of class with the state transition
system model, and allowing the state of one class to be defined as a composition of
states of other classes, we provide a means of specifying state transition models in a
constructive fashion. Further, such an approach provides a more constructive means of
testing actual behaviour with required behaviour. This is explained in more detail in
[11] where LOTOS is used to provide a state based view of objects as processes.

The equations of a class specify how all its member objects respond to all valid
service requests. In fact, they correspond to labelled state transitions. The equations
map a state before the transition to a state after transition (and may be labelled by a
value to be returned to the service requester). An object’s state can be structured or
unstructured. An unstructured state is represented by a literal value. A structured state
is represented by a set of component objects. Composition is primarily a relationship
between objects. It can, however, be extended to classes: when all class members are
represented by the same structure then the class can, without ambiguity, be said to be
composed from the classes which parameterise the structure.

This state based object view forms the basis on which we build our feature animations
and permit behaviour validation in a compositional manner. However, they are not
good for formal reasoning about feature requirements. For this we need to consider
specification of state invariants and fairness properties.

2.2 Defining Invariants: A static view

Invariants are needed to specify abstract properties of a system which must always
be true. The object oriented approach permits the definition of three sorts of invariant:

e Typing: By stating that all objects are defined to be members of some class we
are in fact specifying an invariant. This invariant is verified automatically by the

O-LSTS tools.

e Service requests: Typing also permits us to state that objects in our system will
only ever be asked to perform services that are part of their interfaces. This
invariant is also verified automatically by the O-LSTS tools.

3Tn fact, in this paper we do not consider such issues such as subclassing, inheritance and polymor-
phism; thus the view is really object based.

e State Component Dependencies: In a structured class we may wish to specify some
property that depends on the state of two or more of the components, and which
is always true. This cannot be statically verified using the O-LSTS semantics but
can be treated through a dynamic analysis (model check). Unfortunately, such a
model check cannot be guaranteed when we have large (possibly infinite) numbers
of states in our systems. For this reason we need to adopt a more proof theoretic
framework (such as the B tool).

By translating our state invariant requirements into another proof theoretic frame-
work? we have been able to statically verify our state component invariants. These
invariants are often the key to feature interactions: when features are components and
their invariants are not guaranteed by the containing system then we have an interac-
tion.

2.3 Temporal Logics: A fairness view

TLA is a temporal logic introduced by Lamport [14] and based on the action-as-
relation principle. A system is considered as a set of actions, namely a logical disjunction
of predicates relating values of variables before the activation of an action and values
of variables after the activation of an action; a system is modeled as a set of traces
over a set of states. The specifier may decide to ignore traces that do not satisfy a
scheduling policy as strong or weak fairness and temporal operators as O (Always) or
& (Eventually) are combined to express these assumptions over the set of traces. Such
fairness is important in feature specification and cannot be easily expressed using our
state based semantics. The key is the need for nondeterminism in our requirements
models.

Without a temporal logic, nondeterminism in the features can be specified only at
one level of abstraction: namley that of an internal choice of events. This can lead
to many problems in development. For example, consider the specification of a shared
database. This database must handle multiple, parallel requests from clients. The order
in which these requests are processed is required to be nondeterministic. This is easily
specified in our OO semantic framework. However, the requirements are now refined
to state that every request must be eventually served (this is a fairness requirement
which we cannot express in our semantic framework). The only way this can be done
is to over-specify the requirement by defining how this fairness is to be achieved (for
example, by explicitly queueing the requests). This is bad because we are enforcing
implementation decisions at the requirements level. With TLLA we can express fairness
requirements without having to say how these requirements are to be met.

2.4 POTS: A mized model view

To illustrate the mixed-model approach, and to aid understanding of the features
in our case studies, we examine the specification® of the behaviour of a single phone,
within POTS, from the user’s point of view. The dynamic behaviour is modelled by
the state transition system in figure 2.

A state invariant which defines a relation between the hook component and the signal
component will include the following requirement: (signal = talking) => (hook =
off). In the simple finite telphone system, this is directly verifiable by checking that

4In fact, we have successfully performed the translation to B and PVS.
5This specification is much simpler than the real case, but we abstract away from a number of
details in order to simplify our reasoning.

CLASS Phone USING UID, signal, hook
- N
STRUCTURE hook, signal INTERNAL otherChangehook, dialln, otherBusy, give-up, otherFree
otherChangehook

On,Ringing \ Off,Ringing

otherChangehooky
dialn \

|
|
| \
|
|

drop

>.

oﬂLerB{usy

\
N i
— N | otherFree

\

|
otherChangehook
"2 Consim DL e Corma D
P p— dia(UID))
! Y = - - _ _ _ / give-up
drop -
lift dial(UID) drop listen:signal receiver:hook

Figure 2: A single POTS phone user model

it is true in all the states. In the network of many different telephones we use the
invariant to specify relations between pairs of phones. For example, a simple POTS state
invariant requirement is that only an even number of phones can be talking at
the same time. This is proved by showing that it is true in the initial state (where all
phones are off and ready). Then we show that all possible state transitions maintain the
required property (if it is true before the action occurs then it is true after the action
occurs). This property cannot be checked through an exhaustive search of a system of
an unbounded number of phones. It can be checked by proving that all transitions are
closed with respect to the invariant.

Nondeterminism in the telephone is specified through internal events. These cor-
respond to actions which are not available to the phone user but which perform state
transitions. The simple phone example illustrates the need for fairness (where we specify
that something good eventually happens rather than that something bad never hap-
pens). Consider a telephone which has just dialled a number and is off hook and silent.
The user does not wish to remain in this state indefinitely but can only drop the phone
if they wish to instigate a state change. By specifying fairness on the give-up action
we guarantee that this state transition must eventually happen if the phone stays in
the off-silent state (for whatever reason).

3 Case Studies: Feature Pairs

We examine only pairs of features that are generally accepted as interactions. Of the
six pairs which we chose (more for their repetitive apperances in the available literature
than for any other reason) we show that, within our formal semantic framework, there is
only one interactions which, if suitable analysis methods are used, can be detected and
resolved automatically. We find this to support our argument that formal requirements
models are beneficial to the feature development process.

3.1 Call ID and Call ID Restriction

Call ID (CID) offers a means of identifying the caller whilst Call ID Restriction
(CIDR) stops outgoing calls from being identified. This is clearly a case of contradictory

requirements ...or is it?7 We believe that with a good requirments model then there
is no interaction in this case. Firstly, we must formalise the requirements of the two
services in order to show that there is no reason for there to be a contradiction. Such
formalisation led us to a more thorough understanding of the requirements.

CID Requirements

Consider what the user actually wants from CID. If I subscribe to CID and my phone
is ringing then I can see the identification of the caller. The type of the identification is
crucial to the problem. For example, if the identification is a telephone number (TN),
then we must consider the assumptions made about what we can do with such data.
For example, we can dial a TN and expect to reach a phone, we can add a TN to a black
list for incoming calls, and we can call back (if busy) the TN of a caller who couldn’t
get through. This is the real reason why types are important: they define what we can
do with certain things in the system. Problems arise (feature interactions) if we are not
careful about the type of the identification returned by the CID feature. Above all, we
should not make the assumption that the type of the identification is a TN.

CIDR Requirements

Consider what the user actually wants from CIDR. If T subscribe to CIDR then I
don’t want the person(s) I am calling to be able to contact me through the use of CID.
In other words, I don’t want my identification to give them enough (any) information
about who I am or where [am. CIDR should thus give me control over what information
is carried by my identification when I make a call. By default, the identification can
be set to some well accepted value like the TN from which the call originated, or a
personalised TN for the caller, or restricted for CIDR, or international for overseas calls
which do not offer CID, or

CID and CIDR: No contradiction

A problem was said to arise when the caller has activated the CIDR feature whilst
the callee has activated CID. It was expected that the callee can access the TN of the
caller and so use it in many other different features like Automatic Call Back (ACB),
for example. This led to the feature developers havng to change the original feature
specifications to cope with the exception case(s). Problems arose because they made
assumptions about what could be done with the value returned by the CID feature;
then these assumptions were invalidated by the CIDR feature. This is a classic example
of bad requirements modelling: there are hidden assumptions which should be made
explicit.

In our formal model we make no such assumptions because we create a polymorphic
type system for the identification data. A class hierarchy states explicitly the assump-
tions we make about the data being shared and so we avoid an interaction (and can
formally prove that no such interaction occurs).

Lessons learned

It is clear that problems can arise in this case because of lack of understanding of
the CID requirements. CID is concerned with gaining some information about the
incoming call which may be used to identify the caller. We can mistakenly assume that
the ID will be a TN but unless such an assumption is made explicit then we do not
truly understand the requirements being specified. In this case, if we explicitly state
that an ID is a TN then we do have an interaction. Such an assumption can be made
explicit by specifying the type of the ID. However, through detailed analysis of the
CID requirements, we have avoided a potential interaction by not making this invalid

Phone Extended By Call Waiting
.
Call Waiting

off talk-hold Wr\
off hold-talk

-7
\

/drop \ -

T

diailn(UID)% z hold
/ =

Phone

\\ -
\ / _ —otherChangehook
<= - - - _

inqi \
On,Ri nging otherChangehool
drop /\
therB!
diann(uwk ofherJusy |

\
x dia(UID)

Figure 3: Call Waiting state transition model

assumption.
3.2 Call Waiting and Three Way Calling

This, again, is commonly used to illustrate feature interaction. It is a classic case
which frequently appears in the literature. We believe that, with good requirements
models, there is no interaction at all. The interaction arises only when invalid assump-
tions are made about the triggering of the Call Waiting (CW) and Three Way Calling

(TWC) features.
CW Requirements

When I activate CW its functionality is enabled only when T am talking to someone
else. If T am talking to someone and a third person tries to call me then I can chose to
hold them. Now I am talking to one person and holding another. I now have the ability
to switch the talking and held persons. I can hang up on both calls at once and become
on and silent in the normal POTS state. Similarly, either of the two other parties can
hang up and I return to the POTS state off and talking. The state-transition based
requirements model is shown in figure 3.

TWC Requirements

If T subscribe to TWC then the feature is enabled only when T am talking to someone
and I receive a call from a third party. I then have a new service (connect) which
permits me to talk with both callers at the same time. In this new state I can also
disconnect either one of the two callers. This is illustrated in the partial state transition
diagram in figure 4.

CW and TWC: No interaction now

Traditionally, the argument for these two features interacting is as follows: What
happens if both features are activated and we are talking to someone when we recieve
an incoming call? There is an ambiguity because the system doesn’t know which feature
to execute. The problem is then further complicated by the fact that a flash-hook is
used as the concrete event for three different abstract events (namely, hold, switch and
connect). In this case the mapping between abstract and concrete events is not well
defined since the ambiguity cannot be resolved by context alone.

Phone Extended By TWC
(N\
otherChangehook, © ~ ~ ~ T T T T T T T T T T T T T T - N

e
P disconnect N

c - N
TW I J
Phone *

o s =
ot alering > .@,
N /
/
yi /
/4 /

\ , OtherRingin

Figure 4: Three Way Calling (partial) state transition model

In our development strategy, neither of these problems exists and thus we do not
consider this an interaction case. Quite simply, we cannot identify a contradiction in
the requirements. CW allows the caller to be held if the called chooses to do so. TWC
allows the caller to be connected to a 3-way talk if the called chooses to do so. There is an
active choice made and the caller cannot be guaranteed to be held or connected. Thus,
in the combination of both these features the possibility of either feature executing
does not change, and the choice is still made by the person being called. Certainly,
in the documented specifications where an interaction is claimed one of the problems
seems to be that feature execution is not a choice but an obligation. Consequently,
interaction will occur. This, again, is a problem of bad requirements models and lack
of understanding.

To complete our analysis of this feature combination, we comment on the notion
of mapping abstract to concrete actions. The need for this arises from the limited
interface functionality of standard telephones. At the telephone we often have to assign
different meanings to the same action depending on context (like the flash-hook signal
in this example). This requires a mapping from possibly overloaded concrete actions
to a set of abstract mappings. Problems occur if this mapping cannot resolve the
ambiguity of overloading using internal knowledge of the system state. For example,
in the state where I am talking and someone is ringing we should not have flash hook
as the concrete action for both connect and hold. The correctness of the mapping can
be verified statically to guarantee that this doesn’t happen. It is really a design detail
which should not be of interest in the requirements development stage.

Lessons learned

By avoiding passive entry into feature execution we avoid the obligation of feature
execution. In this way we avoid concurrent execute of two features. Furthermore, we
must take care when mapping from abstract to concrete actions during design. This
mapping can only be made rigorous (and proven to be correct) if the individual features
have formal requirements models.

Call Waiting and Three Way Calling: An extension

In our formal specification of CW and TWC we have not considered how to go from
one feature to the other (without first having to go through a basic POTS state). For
example, we may require that when holding a call we could then connect it. This
transfers us from CW control to TWC control. Similarly, we may consider allowing a
TWC to hold someone, thus transferring control the other way. The temptation is to

try to do this directly as an interaction between CW and TWC. However, this approach
does lead to contradictory requirements in each of the distinct features. Consequently,
we realise that this extension needs to be developed as something new in its own right.
In this way we can re-use the two features as components of the new feature (but the user
does not use the two features individually). This is a much more controlled approach
to feature development than an ad-hoc approach which attempts to use interactions to
provide something more than just the sum total of their two parts (which is where many
of the problems originate). Our object oriented approach clarifies this as the difference
between inheritance and delegation.

3.3 Wake Up Call and Call Forward No Reply

This combination of features illustrates what happens if requirements modellers make
implementation decisions too early in the development process. The Wake Up Call
(WUC) can be specified as occurring as the result of an incoming call from some central
clock. This leads to problems with Call Forward No Reply because it tries to forward
WUC to another number.

WUC Requirements

With WUC T can request my phone to ring so that it wakes me up at a specified
time. To stop it ringing, I lift the phone which leaves it in a wake up message state.
After that T can only put the phone down. This cancels the alarm.

CFNR Requirements

With CFNR, when I have an incoming call which is not answered then it will even-
tually be forwarded to another number.
WUC and CFNR: interaction analysis

In the case where both WUC and CFNR are activated the traditional view is as
follows: The two features interact because if I don’t answer a WUC before a certain
number of rings then the call will be forwarded to another number. Thus, I may not
be woken up whilst someone who wishes to sleep will be disturbed.

In this case, problems occur because the developers are making the assumption that
a WUC leads to the phone ringing because of an incoming call, i.e. the phone rings
because the call comes in from somewhere else in the phone network. This assumption
is obviously implementation based: if we have a centralised clock then this clock can
be shared between all WUC users. Furthermore, it assumes that the call in the WUC
(used to start the phone ringing) is the same type as the call used when an ordinary
phone calls the user.

In our model, we make no such assumptions. The WUC action that triggers the
ringing of our phone is not the same as that of a normal call: we don’t even specify
whether it comes from the network or from a local clock in the phone. Since it is not a
call it cannot be forwarded. Thus, there is no interaction.

Lessons learned

This example shows that we shouldn’t make implementation decisions too soon. To
validate the WUC feature we need to provide an executable specification and the temp-
tation is to re-use the incoming call mechanism. This is a concrete implementation
decision which should not appear in a requirements model. We must have the require-
ments of WUC specified at a level of abstraction which does not oblige us to use the

incoming call mechanism to trigger a WUC.
3.4 Call Waiting and Answer Call

This example is identical to the CW-CFB problem. We mention it because it appears
so often in feature interaction papers. The key, as before, is to make the hold and
leavemessage actions actively decided by the users of the telephones. Thus the activation
of these features gives the choice to do these things and doesn’t oblige their execution.
Lessons learned

This example shows that there is potential for finding a classification of feature com-
positions. Re-use of requirements analysis is possible, and this re-use represents a useful
abstract classification.

3.5 Originating Call Sereening and Call Forward

This feature combination is interesting because it illustrates that precision in re-
quirements really does help to avoid feature interactions. In particular, it shows the
importance of the validation process in the development of formal models. We identify
the need to really understand why Originating Call Screening (OCS) is required. If this
reason is not made explicit in the requirements model then problems can arise with
other features such as Call Forward (CF).

OCS Requirements

With OCS activated, I cannot make outgoing calls to a number on my screening list.
CF Requirements

With call forwarding, all my incoming calls are forwarded to another number.
The potential interaction

The traditional view is that there is an interaction because I may be able to forward
a call to a number on my screening list. Then, when an incoming call arrives we must
ask if it is forwarded as CF seems to require or if it is screened as OCS seems to require?

Here, the reasoning behind the OCS feature needs to be examined. Does the user
screen the calls because they don’t want to pay for calls to the screened numbers
(perhaps all international numbers are screened)? Does the user screen the calls because
they don’t want to allow access to the phones specified. When the requirement is
cost based then we have to consider who pays for the redirection (forwarding) when
specifying the two features together. For example, if forwarding is paid for by the caller
then we don’t mind forwarding to a screened phone. If forwarding is paid by the user
then we do mind. Although cost is outside the scope of this paper, we can distinguish
between the two cases:

o Cost counts: Specify OCS to disallow the dialling of a number (and thus disallow
payment)

e Cost does not count: Specify OCS to disallow the ringing of a screened call.

The second specification does not contradict the CF requirements since all calls are
forwarded. The first case does lead to a contradiction and is thus representative of
a feature interaction. Only through precise communication with the customer of the
feature can we decide what the requirements of OCS really are. In this case we need
two different OCS features to reflect the different needs (even though, in isolation, the
one OCS feature fulfils both needs).

Phone extended by CFB Phone extended by CW Phone extended by CW and CFB

l talking(U1) I (telking(U1))
I (talking(U1) | ringing(U2) _ | ringing(U2) —
I talklng(UlI 1 [tnging talking(UL)) | - crs
| ringing(U2) | holding(U2)
|
I I \7 I
| |
I

| |
| |
| |
! g talkin !
g(U1)
| |

holding(U2)

Figure 5: Call Waiting and Call forward on busy

Lessons Learned

The simple lesson here is that we need to understand why a feature is being developed.
If there are different reasons then we need to justify using one model (feature) for sets
of different requirements. To address the question of why the customer wants a feature
requires a good level of communication, together with a rigorous validation process.

3.6 Call Waiting and Call Forward on Busy
Call Waiting (CW) and Call Forward on Busy (CFB) provide us with the first in-

stance of contradictory requirements which can be automatically detected because of
the breaking of temporal assumptions in each of the two features.
CW Requirements

The requirements of CW are as explained previously.
CFB Requirements

If T activate CFB then if I am talking to someone and another call comes to my phone
it is automatically redirected (forwarded) to another number of my choice.
CW and CFB: An Interaction (At Last)

CW requires that I will always be given the choice of holding an incoming call if T am
talking to someone when it arrives. However, the CFB feature may be executed before
this choice can be made and so the CW requirement is contradicted in the system con-
taining both features. Furthermore, a fairness condition in CFB states that eventually
the incoming call will be forward. However, if CW is executed, the incoming call may
be held by the user and never be forwarded. Thus we have another contradiction. This
is illustrated in figure 5.

This example illustrates the need for both a state transition model of our requirements
and a logical set of requirement that have to be verified against the model. Using just
the state transition view, it is difficult to see the contradiction in the requirements.
CFB states that eventually the phone forwarded to will be dialled. CW states that the
choice of holding will always be available. The notions of always and eventually cannot
be explicitly expressed in our state transition model. We need a meta-reasoning (based
on TLA semantics) to formally detect the contradictory natures of CFB and CW.
Interaction Resolution: Arbitration

Now that the interaction has been identified, we must examine resolution techniques.
Clearly, the problem is due to the nondeterministic action which forwards the incoming
call to another phone. This action is not actively chosen by the user. If we made the
user choose to forward the incoming call then there would be no interaction. However,
this is against the spirit of the requirements of CFB: the user wants the forwarding to be
done automatically without needing them to know that it is happened. Consequently,
we refuse to change the action of forwarding to be active. Two (obvious) choices for

stopping the parallel execution of both features are as follows. Firstly, we could refuse
to allow the activation of one service whilst the other is activated. On the other hand,
we could ask the user to decide between services as soon as he attempts a double
activation. Both these options are a form of prioritisation (or arbitration). The first
case is controlled by the network system, the second is controlled by the user. Both
these arbitrations are dynamic since the decisions are state dependent.

4 The Feature Case Studies: A Review
A number of principles where identified during our case studies. These are listed below.
4.1 Use Strong Typing

The advantages of typing in all forms of development are well known. Types are
not needed in correct systems but they do help to create correct systems. A simple
telephone example is that of the concept of a telephone number. Clearly, telephone
numbers are polymorphic within a concrete subtyping hierarchy. Without types, it is
difficult to handle the different natures of telephone numbers at the requirements stage.

4.2 Use Types as Behaviours or Roles

Here we impose the object oriented principle of classification. The class is used as
the fundamental unit of behaviour (and as the means of typing these units). Thus,
every feature is a class which plays a specific role. The class hierarchy provides a
behavioural benchmark for categorising features. Already some work has been done
towards creating a benchmark for feature interactions [3] and we believe an object
oriented strategy would complement this research.

4.3 Use Invariants

Invariants are used to define relationships between components of a system that must
be true during the lifetime of the system. They are a well understood, formal means of
specifying requirements in a compositional manner. Every non trivial component (of a
(sub)system), i.e. one with its own components, has an associated invariant and there
is one invariant between all components (of a (sub)system). Invariants are the logical
glue for putting together systems from component parts.

4.4 Avoid ambiguily in naming of actions

The practice of polymorphic actions arises from the minimilist interface provided by
most telephones. For example, a flash hook action can signal different things to different
features. If these features are requested at the same time then the meaning of a flash
hook may be ambiguous. Whenever possible try to maintain a clear distinction between
abstract actions/signals in the requirements model and concrete actions/signals in the
implementation model. Finding a correct mapping between abstract and concrete action
names is a design problem and not inherently a feature interaction problem; although,
the limited domain of concrete actions may make this more difficult (or impossible) in
the case of feature development.

4.5 Features should be explicit not implicit

Typically, features appear in formal specifications only as implicit, derivable proper-
ties of the total system. We can verify that a system complies to the requirments of a
feature but there is no compositional means of removing the feature and examining it as
a single identity. Given a logical landscape as our semantic basis would permit such a

compostional view since the properties required of a feature are exactly its specification.
However, in such a logical approach, the actual development of features is much more
complicated. We believe that we should have an explicit compositional approach in the
same spirit as the logical method, whilst avoiding the synthesis and analysis problems
that arise from features that are specified logically.

4.6 Arbitration is the key to interaction resolution

An interaction occurs only when feature requirements are contradictory. Arbitration
is the means of automatically weakening the requirements of some features to remove
the contradiction.

4.7 Choosing Modelling Language

The advantage of a logical approach is self evident: the combination of features is
just logical conjunction and the absence of interaction is automatic provided the result
is not false. The disadvantage of such an approach is the difficulty in constructing
new features and analysing their dynamic behaviour. The principal problem is that
of communicating with the clients in such a mathematical model. Contrastingly, more
operational (state based) approaches are more powerful with respect to synthesis and
analysis. However, it is then much more difficult to say what it means for two features
to be contradictory (i.e. have requirements that cannot be met at the same time). The
main source of feature interaction problems seems to be exceptions. Using invariants
helps to transfer the analysis of exceptions away from the dynamic and towards a purely
static approach. An object oriented approach gives us abstraction and generalisation
within a compositional user friendly framework. A combination of a number of semantic
frameworks seems to be the only option for all our modelling needs. The probelm of
feature interaction is so general, with complex, diverse issues, that we cannot expect a
single semantic model approach to be satisfactory.

4.8 Operational Requirements are necessary

Concurrent (independent) development of features requires separation of specifica-
tion from implementation. However, for implementors (designers) to fully understand
requirements we expect to be able to animate our specifications. This is also a necessary
part of validation. Thus we require operational semantics [16] for our feature specifica-
tions (as well as our more abstract logical requirements for testing compatibility).

4.9 The incremental development problem: minimise impact of change

In traditional problem domains (and using state-of-the-art development methods)
when new functionality is added to a system it is possible to do this by connecting it to
only a small subset of the system components. (We will not for now attempt to define
the different types of connection.) Additions that are localised (with fewer connections)
are easier to make than those which are spread about the system. The addition of a fea-
ture is inherently a non-local problem (in the current telephone architectures) because
it necessitates connection with most of the other components (the other features) in the
system. Hence, each addition has global impact. We are searching for an architecture
which supports local incrementation techniques.

4.10 Restrictive Assumption Approach

Restrict the assumptions that a feature developer can make about the behaviour of its
environment (other features in the system included). Since new features will be added

later we cannot place any assumptions on them. However, in some cases assumptions
must be made. These should be specified as invariant properties that are amenable
to static analysis. Our goal is to simplify this analysis by formalising a minimum
assumption set that does not restrict our functionality but does eliminate interactions.

5 Conclusions

We have shown that many interactions arise because requirements are badly de-
veloped. Furthermore, we argue that good feature requirements models depend on a
formal mixed-model semantics for successful development. Contradictory requirements
can and should be detected and resolved at the requirements stage of development.
Formality is the most powerful tool in the area of feature interactions.

References

[1] G. Booch. Object oriented design with applications. Benjamin Cummings, 1991.

[2] L. G.Bouma and H. Velthuijsen, editors. Feature Interactions In Telecommunications. TOS Press,

1994.

[3] E. J. Cameron, N. D. Griffeth, Y. Lin, M. E. Nilson, and W. K. Schnure. A feature interaction
benchmark for in and beyond. In Feature Interactions In Telecommunications, 1994.

4] K. E. Cheng and T. Ohta, editors. Feature Interactions In Telecommunications III. T0OS Press,
g

[5] P. Coad and E. Yourdon. Object oriented analysis. Prentice-Hall (Yourdon Press), 1990.
[6] P. Coad and E. Yourdon. Object oriented design. Prentice-Hall (Yourdon Press), 1990.

[7] L. Constantine. Beyond the madness of methods: System structure methods and converging
design. In Software Development 1989. Miller-Freeman, 1989.

[8] Geoff Cutts. Structured system analysis and design method. Blackwell Scientific Publishers, 1991.
[9] T. DeMarco. Structured analysis and system specification. Prentice-Hall, 1979.

[10] J. Paul Gibson. Formal object based design in LOTOS. Tr-113, University of Stirling, Computing
Science Department, Stirling, Scotland, 1994.

[11] J.Paul Gibson. Formal Object Oriented Development of Software Systems Using LOTOS. Tech.
report csm-114, Stirling University, August 1993.

[12] R. Guillemot, M. Haj-Hussein, and L. Logroppo. Executing large LOTOS specifications. In
Proceedings of Prototyping, Specification, Testing and Verification VIII. North-Holland, 1991.

[13] TEE. Special Collection On Requirements Analysis. TEE Transactions on Software Engineering,
1977.

[14] L. Lamport. A temporal logic of actions. Technical Report 57, DEC Palo Alto, april 1990.

[15] S. Owre, N. Shankar, and J. B. Rushby. The PVS Specification Language. Computer Science
Laboratory, SRI International, CA, February 1993.

[16] Pamela Zave. The operational versus the conventional approach to software development. Comm.

ACM, 27:104-118, 1984.

[17] Pamela Zave. Feature interactions and formal specifications in telecommunications. IEFE Com-
puter Magazine, pages 18-23, August 1993.

