A LOTOS-Based Approach To

Neural Network Specification

J. Paul Gibson
Department of Computing Science,
University of Stirling,
Stirling FK9 4LA.
(jpg@uk.ac.stir.cs)

11th May 1993

Abstract

The objective of the SPLICE! project is to help bridge the gap that
currently exists between customers, specifiers and designers. Central
to the initial phases of the project is the identification of problem do-
mains suitable for study, together with the prototyping of tools for
the specification and animation of systems within the chosen problem
areas. Neural network specification has been identified as one area
which can be usefully considered. This paper examines how LOTOS
can be used to specify the behaviour of one particular type of neu-
ral network: a trained perceptron. It also gives an overview of the
customer-friendly environment, currently under development, which
provides tools for the generation and testing of perceptron models,
defined as LOTOS specifications. We conclude with recommenda-
tions for further research into the area of neural network specification

using LOTOS.

ISPLICE: Specification using LOTOS for an Interactive Customer Environment.

1 Introduction

1.1 Introducing SPLICE

The initial formal statement of requirements is a difficult, yet vital part of
system development. Errors should be identified and removed as early on
in the development process as is possible. Identifying a higher proportion of
errors in the initial development stages depends on improving the commu-
nication between customers and designers. The customer must be able to
comprehend the formal requirements model in their own terms. Comprehen-
sion is aided when the static structure of the problem domain is represented
in the structure of the requirements specification, together with the identifi-
cation of some correspondence between components of the problem domain
and components of the FDT being used to model the requirements. Further,
interactive execution of the formal model can improve customer understand-
ing of the dynamic properties of the system being specified.

The work in SPLICE (the initial project proposal, which gives a good
overview of the objectives of the work, is given in [TUR]) first identified
a number of problem domains suitable for further analysis. The domain of
neural computing was chosen, as a suitable domain, for the following reasons:

e There has, quite recently, been much interest expressed in the formal
specification of neural networks.

e Neural computation provides a large, diverse and expanding audience

for FDTs, in general, and LOTOS, in particular.

e Neural networks are highly concurrent, dynamic systems composed
from sets of fundamentally very similar components, with well defined
notions of structure.

1.2 Introducing Neural Networks
1.2.1 Parallel Distributed Processing Systems (PDPSs)

PDPSs [RUM] occur in many guises in computing science. Any system (hard-
ware or software) which is composed of independently executable communi-
cating processes can be said to be a PDPS. The key feature of a PDPS is the
distribution of processing and data. This makes the interpretation of such
data more difficult than with non-distributed systems. However, it is such a

flexible representation method which gives rise to many of the perceived ad-
vantages of distributed data, e.g. gradual degeneration of system behaviour
due to data corruption or hardware failure.

1.2.2 Neural Models

In neural computing there are a large number of models — each a type of
PDPS. The processes, and interprocess communications, in neural networks
are modelled on the behaviour of neurons in the brain [BEA]. These models
are called neural networks [KOH]. A general characteristic of neural networks
is the simplicity of behaviour at each node process, so that the complex
behaviour of a network arises from the large number of interactions between
nodes rather than from complexity inherent in the node behaviour.

There are many algebraic formalisms which are suitable for the represen-
tation of PDPSs, [HOA, MIL] are two well known examples. Furthermore,
there have been various attempts, based on these formalisms, towards a char-
acterisation of a general model for neural network specification and design,
e.g MIND in [KOI] and AXON in [HEC]. Unfortunately, there is no standard
way of specifying an artificial network; or of prototyping, testing and imple-
menting such a specification. However, many of the different models used in
the specification of neural networks share the same features. The first step
in providing a generalised framework for the development of neural network
specifications is the identification of these common features.

1.2.3 A Framework for the Specification of Neural Networks

Neural network models currently fall into two catagories: informal and ex-
ecutable, or formal but non-executable. The advantage of an executable
model, with respect to improving customer understanding, is that the dy-
namic behaviour of the network can be explored, through animation, in a
step-wise fashion. Informal models are prone to ambiguity and are not
amenable to mathematical manipulation. Formal mathematical models, such
as proposed in [SMI], can be used to specify neural network behaviour but
cannot be directly simulated for prototyping or testing. What is required is
a formal description technique which provides facility for direct execution of
specifications, whilst allowing specification at different levels of abstraction.
The description of a neural network needs to define the following:

e The static structure of the interconnectivity between processes.

e The interface between the network and its environment (static and
dynamic aspects).

e The dynamic behaviour of the system over time: the type of commu-
nication between processes and the internal processing performed by
each node.

Any model which describes these three aspects can be said to provide a
specification of a neural network.

1.2.4 The Advantages of Formality

The need for formality in the description of neural networks has been identi-
fied [ZIP, SMI]. As neural networks increase in complexity, and the science of
neural computing becomes more widely followed, a concise and unambiguous
method of describing networks increases in importance.

At the simplest level, a standard formal specification technique allows
researchers to include specifications in papers without risk of misinterpre-
tation. Reasoning about the behaviour of neural models can then be done
in a clear and consistent fashion. A mathematical framework would prove
its usefulness through the increase in mutual understanding between neural
scientists.

Neural network behaviour, as described by a formal language, can be
mathematically analysed without the need for execution. The type of static
analysis that can be usefully employed is currently under investigation. In
particular, we are examining the role of non-standard interpretations (views)
of the LOTOS code. It is hoped that this information can be used to im-
prove customer understanding and be incorporated in a tool for automatic
documentation generation.

A FDT is vital when considering the re-use of component specifications.
There are many risks in re-using library components if their behaviour is not
formally defined. Although formality is not necessary for re-use (consider
most programming languages), it is necessary for controlled re-use.

2 Modelling Neural Networks Using LOTOS

2.1 Modelling a Framework of Inter-process Commu-
nication

LOTOS is well suited to the modelling of networks of static and dynamic
intercommunicating processes [FRE]. The static topology of a neural net-
work can be realised directly in LOTOS — each neuron in the network has
a corresponding process in the LOTOS specification. The communication
between processes can be modelled synchronously or asynchronously. A LO-
TOS specification facilitates a formal static analysis of certain features of a
neural network. Animation of the LOTOS specification allows neural network
designers to preview the behaviour of the network before an implementation
is coded in an efficient manner. Mathematical manipulation of the specifica-
tion, in the form of formally defined transformations, may also benefit neural
network developers (although, our research has yet to verify this claim).

2.2 Architectural Concepts and Structured Develop-
ment

The basic components of a neural network can be realised as ‘LOTOS tem-
plates’. Node processes, communication links, node layers, node slabs, in-
put/output slabs, fan-out units, fascicles, etc., [HEC] are specified as process
algebra components. Learning functions, connectivity functions, connection
signal types, neural state, etc., [HEC] are specified using the ACT ONE part
of LOTOS.

LOTOS encourages a structured development of specifications/designs.
Composition of a neural network is recognised by a LOTOS specification of
a network of inter-communicating nodes being described as a single node.
Decomposition involves a node process being replaced by a different neural
network (sub)system. Different parts of a neural network can therefore be
viewed at different levels of abstraction.

2.3 Re-Use: An Object Oriented Flavour

The current research on neural network specification has identified the need
for node generators [HEC], i.e. library components or templates for the

construction of parameterised node behaviour. [ZIP] acknowledges the suit-
ability of object orieted techniques in this area. Node behaviours can be
classified in a hierarchical fashion and inheritance provides one type of re-
use mechanism. There is reason to believe that (sub)network topologies and
learning mechanisms could also be classified for re-use. A standard set of
neural network components would free designers from having to repeatedly
express the same architectural knowledge in different network models. LO-
TOS, being amenable to an object oriented style of specification [RUD, HUL],
may provide a suitable formal basis for this type of behaviour re-use. This
is an area of current research in SPLICE.

2.4 Potential Problems for Specification

In many neural networks, the environment is a time varying stochastic func-
tion over the space of input values [RUM]. In other words, at any time ¢,
there is some probability that any of the input values is impinging on the
input processes/nodes. The specification of general neural systems requires a
model that can cope with synchronous, assynchronous and continuous time
systems. Continuous time systems are notoriously difficult to model in an ex-
ecutable environment. There may also be difficulties in modelling the global
time necessary for synchronous dynamics if structured top-down development
is to be allowed (i.e. the decomposition of one network process into a sub-
network of component processes may not be possible within the constraints
of a global time model).

Although there is a large body of research with regard to the specification
of timing ([BOL] is a good example of such work in the LOTOS domain) and
probabilistic ([HAN] gives an overview in a general process algebra frame-
work) properties in different process algebras, it was felt unwise to try and
incorporate this (not yet fully mature) work in our initial investigation of
neural network specification. Rather, we chose to examine a type of network
which does not rely on these types of semantics (and so can be specified using
LOTOS in a standard way): a perceptron.

INPUT LAYER INTERNAL NET OUTPUT LAYER

Figure 1: A Perceptron Model

3 The Neural Network Model: A Perceptron

3.1 Perceptron Structure

Figure 1 illustrates the structure common to all perceptrons. Our LOTOS
model permits any form of Internal Net, even though the set of all possible
perceptron models is equivalent, in behaviour, to the set of perceptrons with
only one hidden layer [RUM]. Each of the nodes in the perceptron model
has the same structure, as illustrated in figure 2. The node fires the value
weightOut, on all its output lines, when the sum of its inputs (X7, Wiz,
where z; € {0,1}) is greater than (or equal to) the threshold value intrinsic
to the node.

x0

WeightOut

™~

Figure 2: A Perceptron Node

3.2 Learning: An Overview

The perceptron learns by adjusting the weights on the links between nodes.
These adjustments are made as follows:

e When the output is active, but it should be inactive, then the internally
active units have their WeightOut values reduced. In our model this
reduction is calculated to be the sum of the signals being received by
the node.

e When the output is passive, but it should be active, then the internally
active units have their WeightOut values increased. In our model, the
increase is again the sum of the input signals.

These adjustments model the correction of misbehaviour. The environment
of the network is required to judge the correctness of the output, for each
set of inputs, and prompt the weight changes. In our LOTOS model the
changing of weights is done through the update gate.

3.3 The Generation of Perceptron Networks: Two Ex-
amples

The LOTOS specification of the perceptron model is given in appendix A.
To test this specification we generated a number of different networks. Two
examples of the networks which were generated and tested are: a simple
XOR gate, and a noughts and crosses pattern recogniser. We consider these
two cases before the specification is considered in more detail.

3.3.1 An XOR Perceptron

The XOR problem is often used as a standard test for neural models. The
network which we generated to solve the problem of learning XOR behaviour
has structure as illustrated in figure 3.

Fortunately, in this simple case, we managed to execute the specification
so that it learned how to distinguish between two sets of inputs: {00,11}
and {01, 10}.

3.3.2 A Noughts-and-Crosses Perceptron

To test our perceptron model more completely, we defined a more difficult
problem: recognising three-in-a-row in the noughts and crosses game. In this
case, there are nine input nodes (one for each position on the board). An
active input corresponds to an X. An inactive input is not considered. Three
Xs in a row should produce an active output. Conversely, an inactive output

¢ out

<b

Figure 3: An XOR Perceptron

occurs when there are not three Xs in a row. The perceptron designed to
solve this problem was structured as illustrated in figure 4.

Output = 3 xsinarow?? active
-1 2 3 S -7 |
— 4 5] " 6
Board Mapping
Figure 4: A Noughts and Crosses Perceptron:X0s

active

Unfortunately, although we were able to generate such a neural network,
it was not possible to train it by a simple animation process (using LITE).
After approximately a dozen learning iterations, the network did not appear
to have learned very much. In this case, it was necessary to implement
the model to achieve a performance level necessary for learning. The X0Os
perceptron was useful only to clarify how the network was going to learn.
The specification was too unwieldy to model learning during an animation
of reasonable duration.

3.3.3 Lessons Learned From Examples

The primary lessons learned were:

o [t is possible to usefully specify neural network behaviour in LOTOS.

e The specifications are not customer oriented in their present form, but
there is potential for formalising the standard graphical representations,

using LOTOS.

e The animation tools need extension before they can be usefully applied
in the execution of a learning process which takes many iterations.

4 The LOTOS Perceptron Specification: An
Overview

The code for the Perceptron network is given in the NETWORK specification
in appendix A. This is complete, except that the ACT ONE equation def-
initions are not included. Rather than examining this code in detail, we
give an overview of its structure, and extract some of the more interesting
specification fragments.

4.1 The NetSpec Process

The NetSpec is defined to have two distinct stages of behaviour. In the
first stage, the network of nodes and links is constructed. The structure
is defined in the ACT ONE sorts which parameterise the NNet and InOut
component processes: Net is used to represent the internal structure of the
network and InOut represents the external interface, i.e. the set of In and
Out nodes. When construction is complete, a complete event occurs. This
partial behaviour is defined in the specification fragment below:

behaviour

NetSpec[inn,out,linkin,linkout,addlink,addnode,complete,update] (NoN-
odes,NoNodes)

where process NetSpec[inn,out,linkin, linkout,addlink,addnode,complete,update]
(InSet:NodelDSet,OutSet:NodelDSet):noexit:=

hide message in

(NNET [addlink,addnode,complete,message ,update](N_N(NO),None)

| [linkin,linkout,complete,addlink,message] |
InOut[inn,out,linkin,linkout,addlink,complete,message] (INSet, OutSet))

10

The left hand side of figure 5 shows the structure of the system before the
complete event occurs. After completion the structure in the ACT ONE is
transferred to the process algebra: all internal nodes are defined as NNode
process instances. This transformation is done by the MakeNet process:

process MakeNet[message,update](NS1:NetState): noexit:=

hide madestep in

([IsEmpty(NS1)] -> stop) []

([not(IsEmpty(NS1))] ->

(NNode[message,update]

(getID(getNode(NS1)), getFr(getNode(NS1)), getTo(getNode(NS1)),
getTh(getNode(NS1)), getWe(getNode(NS1)))

| [message, update] |

(madestep; MakeNet[message,update](remove(NS1)))))

Once all the added nodes have been realised as NNode processes, the
MakeNet process (see the right hand side of figure 5) stops and the behaviour
of MakeNet is defined by the set of NNode processes running in parallel. These
communicate with each other using the message gate and synchronise with
the environment on the update gate. The ModelIO process controls the
learning process through the gates in and out. It guarantees that all inputs
are received before the output is calculated:

process ModellO[inn,out,message]
(InS:NodelDSet,0S:NodelDSet) :noexit:=
(GetIns[inn,message](InS,08,InS) >>
(GiveOuts[message,out](InS,0S,0S) >>
ModellO[inn,out,message](InS,08)))

4.2 The NNode Process

The NNode process defines how each node communicates with the others, and
how it learns from its environment. The NodeInt process synchronises with
all message events (internal node to node communications), but passes on
(using the MessageOn gate) only those communications which the node di-
rectly participates in. The Node component process rotates between: getting
all inputs from its input lines, sending its resulting output on its output lines
and updating the weighting on its output lines (in response to an update
event):

11

Model Learning Process
Construct the Neural Net M akeNet

NetSpec

-
NNode

l | complete

/

|
1
|
addnode |
| | /mes&age
| |
1 linkin | linkout 1 [ModellO JUPdate
addlink | |
inn out

Figure 5: A High Level View of the Perceptron Specification

process NNode[message,update]
(ID:Node,CommFrom:NodelDSet,CommTo:NodelDSet,
Threshold:Num,WeightOut:Num):noexit:=

hide MessageOn in

(Nodelnt[message, MessageOn](ID,CommFrom,CommTo)

| [MessageOn] |
Node[MessageOn,update](ID,CommFrom,CommTo, Threshold, WeightOut))

4.3 Notes On Specification Style and Clarity

The specification is not written in any particular style. Work is currently be-
ing done in an attempt to specify the perceptron model in an object oriented
style, but this is not yet complete. The specification is not easy to understand
from a simple browsing of the code. However, most LOTOS users gain a high
degree of their understanding through interaction with a specification using
the standard tools. Our initial goal was to make the specification customer
accessible. At this stage in the work it is clear that the standard LOTOS
tools are not appropriate for neural network designer interaction. There is a
definite need, in this instance, to provide problem domain specific tools. In

12

particular we need to transform the LOTOS models onto standard ways of
representing perceptron systems. This work is currently in progress.

5 The Development Environment

A useful neural network development environment must incorporate one of
the following:

e Some means of automating specification generation and manipulation.
e A static analysis tool and associated document generation facility.
e A tool for automating the dynamic behaviour of the specification.

When formally modelling neural networks, the relatively simple core be-
haviour of the network nodes must be embedded in a system that lets the
customer (i.e. the neural network developer) observe, interact with and ma-
nipulate their functionality. Currently, a suitable user-interface is being de-
veloped on an X-Windows platform.

6 Further Work

As this paper reviews only a preliminary investigation in a larger body of
work, it is easy to identify many more aspects of the problem which need
further consideration. The following are currently under investigation, or in
the process of development:

e Automation of the process of generating the neural networks.
e Prototyping of the development environment.

e Extending the work to other types of neural networks, in particular
those which can learn without guidance.

e Testing of the LOTOS specifications against neural network designer’s
requirements.

e Relating the work on neural networks to other problem domains in an
attempt to identify general principles and practices.

13

7 Conclusions

Neural network specification is fundamentally concerned with capturing and
testing the functional and structural requirements of parallel distributed pro-
cessing systems. The perceptron example, given in this paper, shows that
LOTOS is well-suited to this task.

This paper reports on an initial investigation into the production of formal
specifications with customer bias. Even at this early stage, we believe that it
is both possible and desirable to build and test LOTOS requirements models
which are amenable to customer interaction, albeit with comprehensive tool
support.

This paper shows that neural network specification using LOTOS is wor-
thy of further investigation.

Acknowledgements

The author acknowledges the contributions of his fellow SPLICE workers,
namely Ashley McClenaghan and Ken Turner. Also, Bob Clark, Peter Lad-

kin, Ana Moreira and Dominique Mery must be thanked for their input.

References

e [BEA], Neural Computing: an introduction, R. Beale and T. Jackson, Adam
Hilger TOP Pub. 1990.

e BOL], LOTOS-like process algebras with urgent or timed interactions, T.
Bolognesi and F. Lucidi, in: ‘Formal Description Techniques 1V’, pp 249 —
264, (ed. K. Parker, G. Rose), North-Holland 1992.

e [FRE], Modelling Dynamic Communicating Structures in LOTOS, L. Fred-
lund and F. Orava, in: ‘Formal Description Techniques 1V’ (ed. K. Parker
and G. Rose), 1992.

e [HAN], A framework for reasoning about time and reliability, Hans Hansson
and Bergt Jonsson, in: Proceeedinggs 10th IEEE — Real Time System
Symp., Santa Monica, pp 102 — 111, Computer Society Press, 1989.

e [HEC], NeuroComputing, R. Hecht-Nielson, Addison-Wesley, 1990.

14

[HOA], Communicating Sequential Processes, C.A.R Hoare, Prentice-Hall
International, 1985.

e [HUL], Object Oriented Specification Style in LOTOS, Wilfred H. P. van
Hulzen, LOTOSPHERE LO/WP1/T1.1/RNL/N00002, July 1989.

e [KOH], An introduction to neural computing, Kohonen, in: ‘Neural Net-
works’, vol 1, number 1, 1988.

e [KOI], MIND: A specification formalism for neural networks, P. Koikkalainen,
in: ‘Artificial Neural Networks’ (ed. T. Kohonen et al.), North Holland,
1991.

e [MIL], A Calculus of Communicating Systems, R. Milner, Springer-Verlag,
1980.

e [RUD], Inheritance in LOTOS, S. Rudkin, in: ‘Formal Description Tech-
niques IV’ (ed. K. Parker and G. Rose), North Holland 1991.

e [RUM], Parallel Distributed Processing — explorations in the microstruc-
ture of cognition. Vol 1: foundations, D.E Rumelhart et al., MIT Press,
1987.

e [SMI], A framework for nural network specification, 1.. S. Smith, TEEE
Transactions on software engineering, vol. 18, no. 7, July 1992.

e [TURY], SPLICE I: Specification using LOTOS for an interactive customer
environment — phase 1, K.J. Turner, University of Stirling Technical Doc-
ument, 1992.

e [ZIP], P3: A parallel network simulation system, D. Zipser, in: ‘Neural
Networks’.

A The Perceptron (Generation-Simulation) Model

specification NETWORK [inn, out, linkin, linkout, addlink, addnode, complete, update
]:noexit

library Boolean, NaturalNumber endlib

type Ident is Boolean sorts Ident_Sort

opns

Base :-> Ident_Sort
eq, t_: Ident_Sort, Ident_Sort -> Bool
Next : Ident_Sort -> Ident_Sort

15

eqns ...endtype (* Ident *)

type Node is Ident renamedby sortnames Node for Ident_Sort
opnnames N0 for Base N_N for Next

endtype (* Node *)

type SorW is sorts SorW

opns

Strengthen, Weaken: -> SorW

endtype (* SorW *)
type Num is Boolean sorts Num
opns

zero, one: -> Num succ: Num -> Num
add,sub: Num, Num -> Num _ge_, 1t_: Num, Num -> Bool

eqns ...endtype (* Num *)
type NodelDSet is Boolean,Node sorts NodeIDSet
opns

NoNodes :-> NodelDSet addnode : NodelDSet, Node -> NodelDSet
is_.node: NodelDSet, Node -> Bool is_.empty: NodelDSet ->Bool
remove: NodelDSet,Node -> NodelDSet

eqns ...endtype (* NodeIDSet *)
type NodeState is Node, NodeIDSet, Num sorts NodeState
opns

NS: Node, NodelDSet, NodeIDSet, Num, Num -> NodeState
addto, addfrom: NodeState, Node -> NodeState

getID: NodeState -> Node getFr, getTo: NodeState -> NodelDSet
getTh, getWe: NodeState -> Num

eqns ...endtype (* NodeState *)
type NetState IS NodeState, Boolean sorts NetState
opns

None:-> NetState addnodestate: NetState, NodeState -> NetState
addlink: NetState, Node, Node -> NetState getnode: NetState -> NodeState
remove: NetState -> NetState IsEmpty: NetState -> Bool

eqns

endtype (* NetState *) behaviour
NetSpec[inn,out,linkin,linkout,addlink,addnode,complete,update] (NoNodes,NoNodes)
where(* *)

process NetSpec[inn,out,linkin linkout,addlink,addnode,complete,update]
(TnSet:NodeIDSet,OutSet:NodeIDSet):noexit:= hide message in

(NNET [addlink,addnode,complete,message,update](N_N(NO),None)

| [linkin,linkout,complete,addlink message] |

16

InOut[inn,out,linkin,linkout,addlink,complete,message] (INSet, OutSet))
where(* *)
process InOut[inn,out,linkin linkout,addlink ,complete, message]
(InS:NodeIDSet, OS:NodeIDSet): noexit:=

(linkin?Nodel:Node; addlink!NO!Node];

InOut[inn,out, linkin,linkout,addlink,complete,message]
(addnode(InS,Nodel),0S))(]

(linkout?Node1:Node; addlink!Node1!NO;

InOut[inn,out, linkin,linkout,addlink,complete,message]
(TnS,addnode(OS,Nodel)))(]

(addlink?Node1:Node?Node2:Node

[(not(is.node(InS,Node2))) and (not(is_node(OS,Nodel)))];
InOut[inn,out,linkin,linkout,addlink,complete,message] (InS,0S))(]
(complete; ModellO[inn,out,message](InS,0S))

where (* *)
process ModellO[inn,out,message]
(InS:NodeIDSet,0S:NodelDSet):noexit:=
(GetIns[inn,message](InS,0S,InS) >>

(GiveOuts[message,out](InS,0S,0S) >>
ModelTO[inn,out,message](InS,0S)))

where (* *)
process GetIns[inn,message]

(InS:NodeIDSet,0S:NodelDSet, ToGet:NodelDSet) :exit:=
([is.empty(ToGet)] -> exit)]]

([not(is_.empty(ToGet))] ->

((inn?NodeIn:Nodelone[is-node(ToGet,Nodeln)]; message!NOlone;
GetIns[inn,message](TnS,0S,;remove(ToGet,NodeIn)))]]
(inn?NodeIn:Node!zero[is node(ToGet,Nodeln)];

message!NO!zero;

GetlIns[inn,message](InS,0S,remove(ToGet,Nodeln)))))

endproc (* GetIns*)

process GiveOuts[message,out]

(TnS:NodeIDSet,0S:NodelDSet, ToGive:NodeIDSet) :exit:=
([is-.empty(ToGive)] -> exit)]]

([not(is_.empty(ToGive))] -> ((message?fr:Node?N0:Node[is.node(OS,fr)]; out!frlone;
GiveOuts[message,out](InS,0S, remove(ToGive,fr)))(]
(message?fr:Node?to:Node[not(isnode(OS,fr))];
GiveOuts[message,out](InS,0S, ToGive))))

17

endproc (* GiveOuts*)

endproc (* ModellO *)

endproc (* InOut *)

process NNET[addlink,addnode,complete,message,update] (ID:Node,NS1:NetState):noexit:=
((addlink?from:Node?to:Node[((from 1t TD)and(to 1t TD))and(not(from eq to))];
NNet[addlink,addnode,complete,message, update] (TD,addlink(NS1,from,to))) []
(addnode?Th:Num?We:Num;

NNet[addlink,addnode,complete, message,update]
(NN(TD),addnodestate(NS1,NS(ID,NoNodes,NoNodes, Th,We)))) []
(complete;(MakeNet[message,update](NS1))))

where (* *)
process MakeNet[message,update](NS1:NetState): noexit:= hide madestep in
([TsEmpty(NS1)] -> stop) []

([not(TsEmpty(NS1))] ->

(NNode[message,update]

(getID(getNode(NS1)), getFr(getNode(NS1)),

getTo(getNode(NS1)), getTh(getNode(NS1)), getWe(getNode(NS1)))

| [message, update] |

(madestep; MakeNet[message,update](remove(NS1)))))

where (* *)
process NNode[message,update]

(TD:Node,CommFrom:NodeIDSet, CommTo:NodelDSet, Threshold:Num,WeightOut:Num):noexit:=
hide MessageOn in

(NodeInt[message, MessageOn]

(ID,CommFrom,CommTo)

| [MessageOn] |
Node[MessageOn,update](TD,CommFrom,CommTo, Threshold, WeightOut))

where (* *)

process NodeInt[message,MessageOn] (ID:Node,CF:NodeIDSet,CT:NodeIDSet): noexit:=
(message?from:Nat?TD:Node? Am:Num; ((MessageOn!from!TD!Am; exit) |||
NodeInt[message,MessageOn](ID,CF,CT))) []

(message?from:Node?to:Node? Am:Num[not(to eq ID)];
NodeInt[message,MessageOn](ID,CF,CT)) []

(MessageOn!TD?to:Node? Am:Num[not(to eq TD)]; ((message!TD!to!Am; exit) |||
NodeInt[message,MessageOn](ID,CF,CT)))

endproc (* NodeInt *)

process Node[mess, update]
(TD:Node,Froms:NodeIDSet, Tos:NodelDSet, Threshold:Num,WeightOut:Num): noexit:=

18

GetInMessages[mess,update]

(TD,Froms, Tos, Threshold, WeightOut,Froms,zero)
* %)

where (
process GetInMessages[mess,update]
(TD:Node,Froms:NodeIDSet, Tos:NodeIDSet, Threshold:Num, WeightOut:Num, ToGet: Nodel-

DSet, Total:Num): noexit:= hide gotmessages in

(([is_empty(ToGet)] -> (gotmessages;

SendOutMessages[mess,update](ID,Froms, Tos, Threshold, WeightOut, Total))) []

([not(is_.empty(ToGet))] -> (mess?from:Node!TD?Am:Num[is node(ToGet,from)];
GetInMessages[mess,update] (TD,Froms, Tos, Threshold, WeightOut remove(ToGet,from),add(Total,Am)))))
where (* *)

process SendOutMessages[mess,update]

(TD:Node,Froms:NodeIDSet, Tos:NodeIDSet, Threshold:Num,WeightOut:Num, Total:Num):

noexit:=

hide nofires,fires in

(([Threshold ge Total] -> (nofires; (Send[mess,update](ID,Tos,zero) >>
(update?SW:SorW; Node[mess,update](ID,Froms, Tos, Threshold, WeightOut)))))][]
([Threshold 1t Total] -> (fires; (Send[mess,update](ID,Tos,WeightOut) >>
((update!strengthen; Node[mess,update](ITD,Froms, Tos, Threshold,add (WeightOut, Total)))
I

(update!lweaken; Node[mess,update](TD,Froms, Tos, Threshold,sub(WeightOut,Total))))))))
* %)

where(
process Send[mess,update](TD:Node, Tos:NodeIDSet,Out:Num):exit:=
([is_empty(Tos)] -> exit) [] ([not(is_.empty(Tos))] ->

(mess!TD7to:Node!Out[is node(Tos,to)];

Send[mess,update](ITD,remove(Tos,t0),0ut)))

endproc (* Send *) endproc (* SendOutMessages *) endproc (* GetInMessages *)
endproc (* Node *) endproc (* NNode *) endproc (* MakeNet, *)

endproc (* NNET *) endproc (* NetSpec *) endspec (* NETWORK *)

19

