Formal Object-Based Design
In LOTOS

J. Paul Gibson
Department of Computing Science,
University of Stirling,
Stirling FK9 4LA.
(jpg@uk.ac.stir.cs)

27th April 1991

Abstract

The advantages of object-based techniques in Software Engineering
are well recognised and widely accepted. The inherent flexibility of
object-based systems often leads to an interactive and incremental
style of development, a consequence of which may be insufficient rigour
in software production. As the size and complexity of a software
project increases, it is important to adhere to as rigorous a method as
possible.

This paper shows how a formal method can be incorporated into
an object-based development strategy. In this way it is possible to
provide all the advantages of the object-based paradigm whilst ensur-
ing that the quality of code is not compromised. The specification
language LOTOS is shown to be appropriate for the generation and
evolution of formal object-based designs. The structure of the object-
based specification, as a design, provides a foundation upon which an
implementation can be constructed. A simple network routing system
illustrates the role of the design in the object-based development pro-
cess, from the generation of the LOTOS specification to the coding of
the C++ implementation.

1 Introduction

Formal methods have traditionally been associated (in the Software Engineer-
ing field) with the initial stages of the software life cycle [7]. Specification
languages act as a bridging mechanism among requirements analysis and
system design. The object-based paradigm seems to provide a basis for con-
ceptual integrity between all stages of the (software) development process
[3]. The use of object-based techniques in a formal method therefore de-
serves investigation. Consistency between specification of the requirements
and design of a solution has many potential benefits.

This paper does not propose a comprehensive object-based design method.
The problem domain structure is used only as the basis for the design. Even
in an object-based development method, it is unlikely that there is a com-
plete correspondence between the solution domain structure and problem
domain structure. An object-based LOTOS [8] specification does provide
a design framework which may be formally transformed® to reflect architec-
tural choice outside the problem domain. This paper shows how the structure
of an object-based LOTOS specification corresponds to a particular design.
The object-based paradigm guarantees some degree of consistency between
the structures of the problem and solution domains.

This paper reports on a case study that used the structure of a LOTOS
specification as an object-based design from which a C4++ [11] implementa-
tion was developed. The study showed that such a development strategy is
not only possible but also desirable. Furthermore, our experience with the
case study illustrates how an object-based system can be evolved? control-
lably to more complex behaviour within a formal framework.

!The relationship between formal transformations and informal design decisions is out-
side the scope of the work. However, each design stage will have a corresponding object-
based LOTOS specification.

2The evolution of design is a consequence solely of an extension to requirements. Chang-
ing the structure of the specification as a means of reconceptualising the problem is not
considered in this paper.

2 Object-Based LOTOS

Specifications in LOTOS can be written in a number of different styles [14].
The object-based style [2] is supported by LOTOS °.

2.1 Language Considerations

The following scheme informally relates LOTOS concepts to object-based
terminology. Consistent adherence to this mapping forms the basis of an

object-based style for LOTOS.

2.1.1 Process Algebra

e System design is an aggregation of objects

The behaviour of a system can be defined as a number of parallel pro-
cesses. Fach of these processes can themselves be defined as an ag-
gregation of component processes, and so on. Process abstractions
are used to specify behaviours of systems (and subsystems) and cor-
respond to the notion of class. Process instantiations correspond
to the object-based notion of an object. In an instantiation, the pro-
cess state has been allocated particular values and the process is at a
particular point in its behaviour.

e Objects interact at well defined interaction points
Object interaction is achieved through process synchronisation (which
occurs at explicitly defined gates). Process synchronisation is used
to establish or negotiate values, and this provides the basis for mod-
elling message-passing. This relationship needs to be more fully de-
veloped because event synchronisation in LOTOS is not explicitly di-
rectional and may occur among more than two processes. We propose
that the following convention is followed when using the object-based
style. Each gate in the gate list of a LOTOS process should have an
implicit direction (as either a sender or receiver of messages). The
process, acting as an autonomous object, does not need to know what

3Tt is similar to resource-oriented style [13] in that there is a correspondence between
objects and resources, but there are differences in the way that the process synchronisation
mechanism is used.

it is interacting with. In this way, the LOTOS specification can con-
tain multiprocess synchronisation. However, to ensure that there are
no constraints imposed by the process on its environment (which may
be other processes in the specification), an additional rule is required.
Each process must always be able to participate in an event that occurs
at a receiving gate.

e Object-Based System Structure results from the construction
of process definitions
In object-based LOTOS, the parallel composition operator is used in
process definitions to define the behaviour of one process in terms of
two or more others. Internal interaction between the components of an
object (LOTOS process) is specified by hiding appropriate gates in the
specification of that process. It is precisely these compositional aspects
of the specification which represent the design.

e Unstructured (non-composite) processes are the basic build-
ing blocks
Unstructured processes define behaviour which does not require fur-
ther decomposition. Such processes can be written in state-oriented or
monolithic style (but the external synchronisation conventions must be

followed).

2.1.2 Data Type Definitions

The data type definitions in an object-based LOTOS specification have two
main functions. Firstly, they are used in representing the state of a process.
Secondly, they are used with the synchronisation mechanism to establish or
negotiate values between processes. The object-based approach suggests us-
ing process definitions to represent structural and communication attributes
of a system, whilst the data types play a more passive, though equally im-
portant, role.

The case study in this paper showed that there is often a more complex
inter-relationship between the structure of the data typing and process alge-
bra parts of the specification. The structure of the data provides the basis
upon which the system is understood. This structure is then imposed on
the process algebra. For example, the network data is a record of the data
for each node in the network. Therefore, a network process is composed of
a number of node processes. Similarly, the data for each node is divided

4

into routing information (for route calculation) and network information (for
communication). This is reflected in the process algebra — a node process
is composed of a node-body (for routing) and a node-interface (for commu-
nication control).

A fundamental part of writing an object-based LOTOS specification is
the matching of structure in the data typing and process algebra. Although
the process algebra plays the main structural role in the design, it should be
clear that this structure is based on the data. It may be possible to use the
ACT-ONE to capture requirements in the initial stages of analysis. Then, as
the first stage of design, this statement of requirements can be represented
more constructively in full LOTOS. This is beyond the scope of this paper.

2.2 Object-Based Development

The purpose of this paper is to show the effectiveness of LOTOS in repre-
senting object-based designs. It is not an examination of a comprehensive
object-based design method, but it does promote the notion that such a strat-
egy can be developed. The case study re-used the structure of the analysis
as an initial design for a solution. The object-based LOTOS specification is
open to formal manipulation, as part of the design process, but this was not
investigated.

The case study illustrates how an object-based approach narrows the gap
between analysis and design. Consistency of representation, and conceptual
congruence between the way in which the problem is defined and the way in
which it is solved in an implementation, led us to believe that it was valid
to use the structure of the analysis as a design. Much of the work done
in analysing a problem is therefore incorporated in the design of a solution.
Our initial analysis identified components of the system, i.e a decompositional
approach was applied to the whole problem. FEach of the components was
further decomposed until decomposition was no longer necessary to improve
understanding. This implied a purely top-down method, whereas the actual
development combined this with a bottom-up strategy. Components, i.e.
the object-based processes, were specified such that different parts of the
system were at different levels of abstraction during the development of the
specification.

The C++ implementation structure was based on the structure of the
LOTOS specification. Initially, all LOTOS process definitions had corre-
sponding C++ class definitions. But, for reasons discussed in section 4.3,

it was not always reasonable for this constraint to be enforced. The object-
based specification removed the need for design decisions in the code. The
only implementation concerns, which may be considered structural, involved
the removal of non-determinism and concurrency. In effect, the object-based
specification defined the requirements of the system and provided a structure
on which they could be implemented.

3 Lessons learned

3.1 The Importance of Structure

Much of the emphasis of this work has been on structure. Structure at the
specification, design and implementation stages of the software life cycle have
been considered. The importance of structure in the specification needs to
be examined in the context of object-based development.

There is a definite structure contained in the LOTOS specification of
the network routing model. We need to address the question of why it is
there. In large, complex specifications it is impracticable to reason about
the behaviour of the system as a whole. This suggests that a conceptual
decomposition of the problem must be inherent in the specification. We will
refer to a specification as being structured only if the decomposition of the
problem is explicit.

The main benefit of having a structured specification is that it can be used
to aid understanding?. Clearly a specification that is easier to understand
is also easier to implement. The introduction of structure should also make
the system more susceptible to sensible change — the structure should help
to control change by encouraging meaningful extensions or alterations and
discouraging other fixes.

Arguments against structured specifications concentrate on their con-
straining nature. Implementers may argue that the decomposition of the
system, as captured by the specification, is not the way in which they would
choose to structure the code. There may be a conflict of interest between
writing the specification to aid understanding and writing it in a way that
eases the step towards implementation. This is certainly a concern when im-
plementers are working to specific constraints imposed by the programming

41t is likely that a poor structure could also hamper understanding.

language or performance demands. In some cases the conflict of interest be-
tween the specification and the implementation may mean that the structure
within the specification cannot be followed by the implementers. It is effec-
tive use of systems analysis and bottom-up knowledge that mitigates against
this.

Within the object-based paradigm, this problem is not as prominent. The
decomposition of a system into a set of communicating objects is consistent
at all stages of the development cycle. In particular, there is a closer binding
between the specification and implementation architectures. The price for
this is that object-based specifications are less abstract. The structure of the
problem has not been abstracted; instead it has been carefully represented
in the specification with the intention that it be used in the implementation.

A perfect scenario would occur when the initial system analysis produced
an informal problem decomposition that is acceptable to both specifiers and
implementers. Here we mean acceptable in the sense that the decomposi-
tion can be used directly by both. In the object-based paradigm this would
require the objects within the specification to have counterparts in the imple-
mentation. The structure of the system would then be completed by realising
the communication between these components.

There are other advantages in reusing the specification structure in the
implementation:

e Generality
Writing a structured specification requires making a number of design
decisions. In an object-based specification these decisions are often
concerned with producing components that are general. This generality
can then be exploited for component extension and reuse.

e Testing
Making the specification and implementation structures as isomorphic
as possible makes traceability easier, in the sense of a design audit.
Testing the system can be done in a bottom-up fashion. This gives more
confidence in the code being a valid implementation of the specification.

e Controlling Change
Extending or changing the system can be achieved in a more controlled
manner. In an object-based specification, modifications can be kept
localised. However, if the implementation has a different structure
from the specification then updating the code to match the specification

7

may require changes across the whole system. Structural compatibility
means that changes to the specification can be more easily incorporated
in the implementation. Verification of the new system can concentrate
on the components that have been altered.

3.2 Suitability of LOTOS for Object-Based Specifica-
tion

The overall result of the project was that LOTOS is a suitable specification
language for capturing the behaviour of a complex system as a collection
of interacting concurrent objects. There was an informal correspondence
between objects and processes, and between message passing and event syn-
chronisation. This helped to incorporate the structure of the specification
in the implementation. A consequence of this was an obvious relationship
between the different stages of the development process. The LOTOS speci-
fication acts as a formal design. It not only specifies the requirements of the
system, but it also provides a framework within which the implementation
can be built.

The advantage of a consistent specification style is the ability to struc-
ture specifications in such a way that design approach can be explicitly
stated. Complex architectures, in particular, require a consistent structured
approach to aid comprehension. The object-based LOTOS style seems ideal
because of the way it allows for the modelling of systems as interacting parts,
each of which can have a straightforward mapping onto real world implemen-
tation entities.

3.3 The Question of Inheritance

Work is currently being carried out on introducing the concept of inheritance
to LOTOS [1,4]. Our case study did not explore the use of inheritance in
the specification, and consequently inheritance was not used in the C++
implementation.

Before inheritance can be used at all stages of the development process, it
is important not only that inheritance relationships exist but also that they
can be exploited. Libraries of components need to be created and inheritance
needs to be used as naturally as any other language construct.

4 The Network Routing Case Study

4.1 An Overview

The objective of the case study was to apply the object-based approach to
the development of an implementation of a network routing [5,10,12] algo-
rithm. This involved producing an object-based LOTOS specification of such
a system which not only provided a formal statement of the requirements but
also acted as a design for a potential solution. A C+4 implementation was
then coded from this specification. The object-based strategy was to make
the step between specification and implementation as simple as possible by
retaining the same structure throughout the whole development process. In
other words, the design was structured according to problem domain under-
standing. This design can then be transformed to cope with implementation
concerns.

The second part of the case study investigated the object-based claims
for extensibility and re-usability. The behaviour of the system was made pro-
gressively more complex by extending the routing algorithm. Furthermore, a
flow control mechanism was added without changing the existing structure.
In twelve elapsed weeks, four LOTOS specifications were written and three
of them were implemented. A more complete review of the case study [6] is
available on request from the author (together with listings of the LOTOS
and C++ text).

4.2 The LOTOS Specifications

The LOTOS specifications produced deal with a dynamic® system of nodes
connected by links, together with a routing mechanism in each node for the
transfer of data between nodes. The network process is used to guarantee
the allocation of unique identifications when nodes and links are added to
the system. It ‘spawns’ node processes as they are added to the system. It
also synchronises the addition of links (together with the sending of messages
down these links) in all current nodes. An informal LOTOS-like specification
of this follows:

PROCESS Network [add_node,add_link,send,recieve] (..):noexit:=
(hide message in

5New links and nodes could be added at any time during the lifetime of the system.

(add_node; Network .. |[add_link, message] |
Node [message, add_link, send, receive] (ID, No_Links)

) [
(add_1ink? nodel:Node_Sort ? node2:Node_Sort; Network ..
)
]
(message? ..;Network.. (* Internal transfer of a message *)
)

) endproc

4.2.1 The Node

Fach node in the network corresponds to an instantiation of an infinitely
recursive process. Since all the nodes have to be capable of being connected
(by links), a single LOTOS gate (message) was chosen for all communication
between nodes. This requires that all the node processes synchronise at this
gate for every communication that occurs. Every node which is not at either
end of the link carrying the message (in the network routing model) must
participate in the communication, but ignore it. There are only two active
participants in the transfer of a message down a link. The addition of links
is very simple: every node has a link set which is updated every time a link
(which connects it to another node) is added to the network.

The object-based approach requires that each node is always capable of
participating in a message event. In the specification, this is achieved by
giving each node a node-interface component which always participates in
these events, but only routes those which are applicable to that node (by
passing them on to the node body). Informally,

Node = Node_Interface |[..]| Node_Body

4.2.2 The Node-Body

The Node process is structured as two processes in parallel: the Node-
Interface (for controlling synchronisation) and the Node-Body (to provide
routing behaviour). The Node-Body has three components: the buffer for
incoming messages, the buffer for outgoing messages, and the router between
these buffers. It provides an interface to the environment to allow the addi-
tion of new messages to (send), and removal of old messages from (receive),

10

outside the network. Also, it must communicate with the Node-Interface
to accept messages for routing from inside the network.

Internal communication between components is straightforward. The
Node-Interface transfers relevant messages to the Node-Body through an
acknowledged message. The Router extracts messages from the Buffer-
In, routes them by updating one of the message fields, and transfers them to
the Buffer-Out. These are then sent to the Node-Interface via an out-
message, and finally back onto the network. The add-link message results
in two components of the Node changing their internal state: the Node-
Interface needs to update its communication data, and the Router needs
to update its routing data. This is represented in figure 1:

Node send
e N
Node_Int Node Body)
" . received
(" Buffer_In \/
acknowledged
message
Buffer_Out
outmessage
- / - /
- J
add_link

Figure 1: Node Structure Diagram

This structure is replicated in the object-based LOTOS specification as
follows:

PROCESS NODE_BODY [acknowledged, outmessage, send, receive, add_link]
(Node_ID: Node_Sort): noexit:=

(hide next_mess,routed,buff_status in
BUFFER_IN[acknowledged,next_mess,send] (Node_ID, No_Messages)

| [next_mess]|

ROUTER [next_mess,routed,add_link,receive,buff_status]

(New_Routing_Data(Node_ID))
| [routed,buff_status]|
BUFFER_QOUT [routed,outmessage,buff_status]

11

)endproc

where

PROCESS BUFFER_IN [acknowledged,next_mess,send]
(Node_ID:Node_Sort,messages_in:Messages_Q_Sort):noexit:=

(acknowledged?the_message:Message_Sort;

BUFFER_IN[..] (Node_ID,add_message(the_message,messages_in))) []

(next_mess!'next (messages_in) [not (empty(messages_in))];

BUFFER_IN[..] (Node_ID,remove_message(messages_in)))[]

(send!'Node_ID ?to:Node_Sort? data:DecDigit;

BUFFER_IN[..] (add_message

(Create_Message(Node_ID,to,Create_Routing_Data(L0),data),
messages_in))
)endproc

PROCESS BUFFER_OUT [routed,outmessage,buff_status]
(messages_out: Message_Q_Sort):noeXit:=

(routed? the_message: Message_Sort;

BUFFER_QOUT[. .] (add_message(the_message,messages_out))

) [

(outmessage! next(messages_out) [not(empty(messages_out))];

BUFFER_OUT[. .] (remove_message(messages_out))

) [

(buff_status! message_out;

BUFFER_OUTL. .] (messages_out)

)endproc

PROCESS ROUTER[next_mess,routed,add_link,receive,buff_status]
(R_T: Routing_Sort) :noexit:=

(* This process is defined as a composition of a table component and
a routing mechanism component. The complex routing functionality
is ‘hidden’ in the communication between these. *)

(hide table_access, table_update in

TABLE[add_link,table_access,table_update] (R_T)

| [table_access, table_update]|

ROUTING [next_mess,routed,table_access,table_update,receive,

buff_status] (ID_Table(R_T)))endproc

This fits in with the object-based strategy as follows. The gates for receiv-

12

ing messages are acknowledged (for messages arriving from the network),
send (for accepting new messages from the environment), and add-link
(for updating the routing information in the router process). The gates for
sending messages are outmessage (for sending out messages that have been
routed by the node to one of its links), and receive (for removing a mes-
sage from the network that has arrived at its correct destination node). The
internal gates are for communication between the component processes.

4.3 Implementing the object-based specification
4.3.1 Understanding the Object-Based LOTOS

From our experience in the network routing case study, at the end of twelve
weeks the programmers involved (who were not LOTOS experts) could un-
derstand LOTOS specifications provided they were written in a consistent
and familiar style, and provided there was expert advice available to make
clear any difficult points. The object-based approach helped because there is
consistency between the concepts in the programming environment and the
style of the specification.

4.3.2 Implementation Decisions

The C++ implementation had to resolve the following aspects of the LOTOS
specification.

Concurrency: The network specification was primarily constructed from a
number of concurrent node processes. It was not possible (within the
scope of the project) to accommodate this concurrency in the C++
implementation. Instead, it was decided to model the concurrency by
allowing an arbitrary interleaving of the processing within each of the
nodes. This was achieved by requiring, within the implementation,
external triggering of the routing and transfer of messages between
nodes.

Non-determinism: Internal events in the specification also had to be mod-
elled by a similar mechanism as above. For example, after a node has
routed a message it is then ready to route another. The next mes-
sage to be routed has to be extracted from the message buffer before it
can be processed. This is represented in LOTOS by an internal event.

13

The C++ implementation requires an external triggering of the trans-
fer from buffer to router. This is related to the concurrency issue: in
a concurrent implementation the node process could continually route
messages without interruption.

Multi-way Synchronisation: In the specification, event synchronisation
was used for the transfer of messages between nodes, causing two prob-
lems. Firstly, all the nodes in the specification have to synchronise on
the message event even though it is applicable to just two of them. Sec-
ondly, event synchronisation is used to transfer data on the link in either
direction. In the implementation, links were coded as pointers to nodes.
This means that a direction is implied for each message, and two point-
ers are needed for each link. The external triggering of messages being
sent down links removes the problems created by the multi-process syn-
chronisation in the specification. This implementation decision means
that there is no need for a node interface component in the C++ code.

4.3.3 Re-using Structure

There was a conscious decision to replicate the design decisions made at the
specification stage during coding. For example, the decomposition of a par-
ticular process into a system of processes was reflected in the implementation
by splitting an object into a corresponding system of objects. (It should be
noted that structure need not be enforced at the lower levels of coding. The
differences between the two languages means that it may be possible to di-
rectly implement, i.e. without further decomposition, a process that was
defined as a composition of other processes.)

The C++ header file® of a node class is given below.

class node
{private:BufferLink* outBuffers;
Buffer* inBuffer;
char* nodeName;
Buffer* routeMessage(Message* mesg) ;
public: node(char* name); \\ instantiation function
void addlink(node* newNode, char* linkId);

5A C++ header file gives an external view of the behaviour of a class without including
internal details.

14

void messagein(Message* mesg) ;

void send(char* MessageID,char* dest,char* data);
Message* receive (char* 1inkId);

void process(); \\ external triggering of the router
nodex message_out(char* 1inkId);

The structure of the node specification was used in the design of the node
implementation. However, the implementation decisions (outlined above)
meant that there was no need for a node interface. Furthermore, the message
passing had to be ‘divided in two’ so that the C4++ node could distinguish
between incoming and outgoing messages. This division resulted in two sepa-
rate message links going directly to the in-links and out-links components.
In all other respects, the structure of the implementation corresponds to the
structure of the specification.

4.4 The Iterative Development Approach

Our initial aim of developing the implementation from the specification was
fulfilled. Design (structure) decisions were made after consultation between
specifiers and implementers. Often, whilst implementing some part of the
system, a more meaningful decomposition of the problem was discovered.
This was recognised by making alterations to the specification. For example,
the separation of the routing process from the routing data occurred half
way through the development of the specificaton — it made the system much
more amenable to extension. In a general sense, the specification design was
developed top-down — processes were split into sub-processes and these sub-
processes were then further split until each component process was simple
enough not to require further decomposition. Sometimes problems occurred
in the sub-processes that required some of the previous design decisions to be
changed. The development would then continue as before. The conventional
view of the object-based approach is that it is compositional (bottom-up).
In a sense this is true”, but there has to be an initial decomposition of the
problem before base components can be identified.

System development is then bottom-up. Simple components are specified
and implemented together. These can then be combined with other com-
ponents to produce more complex components, which are also tested. The

"Perhaps a compositional approach should not mean that code is written bottom-up,
but that 1t can be understood bottom-up.

15

complete system is constructed in this way. There is flexibility within this
development method. The decomposition of the system can be changed by
altering the balance of functionality between the sub-components of each
component. This encourages the development team to work to a definite
structure, but does not discourage change when it is needed.

The object-based approach is both compositional and decompositional,
providing a degree of flexibility to decide on the balance between the two
methods. Traditionally (in the object-based community) the balance has
been in favour of the bottom-up method since this provides the programmers
with an effective rapid prototyping mechanism.

4.5 Testing

One of the main advantages of using a structured specification is in the area of
testing. If the structure of the specification is followed in the implementation,
verification can be undertaken not only at the system level but also at the
component level. This is beneficial to the development because verification
can begin at an earlier stage and at a finer level of granularity. It should
be noted that, by writing stubs for components with limited functionality,
incremental testing was also done using a top-down approach. This method
is more difficult to apply extensively but it was used initially to test network
behaviour in the absence of routing algorithms.

Testing also increased understanding of the problem domain. For ex-
ample, we discovered that some routing algorithms depend on bi-directional
links (for example, the Hot Potato algorithm). This was not clear from the
informal analysis of the problem.

4.6 Extensions to the Behaviour

The behaviour of the system was made progressively more complex by ex-
tending the routing mechanisms. Flexibility was built into the design to allow
for extensions or alterations to the routing process. Checking extensions con-
centrated on testing the new routing mechanisms, because the other parts
of the system had already been thoroughly tested when the first mechanism
was developed. This was possible because of the way in which changes to
the system affected only the components which were involved in the routing
process. Localised changes like this are made possible when work is done to
reduce the coupling between the components in the system.

16

Our extensions were restricted to changing some of the components in
the original system. This illustrated that specification and code re-use was
possible, but it also showed that it is not always done in the most elegant or
efficient way. The lessons that we learned from carrying out the extensions
were:

e Meaningful generalisation should be applied as much as possible: the
extra time needed in producing a flexible structure results in benefits
later on.

e The object-based approach makes it easier to change behaviour by re-
placing compatible components.

e Components that can be extended (within one application area) are not
the same as reusable components. For example, the routing mechanism
is replaceable but it is unlikely that it could be used in the specification
of different applications.

5 Conclusion

We showed that working from a formal specification has many advantages.
It enhances the understanding of the problem, and consequently removes po-
tential errors earlier on in the development cycle. It also provides a formal
contract between specifiers and implementers. Making design decisions ex-
plicit rather than having them hidden (as often happens with an informal
specification) is beneficial. Also, removing non-determinism makes imple-
menters more aware of the choices that they are making when they write the
code.

The advantages of following the object-based paradigm are as follows.
The conceptual integrity between all stages of the development cycle allows
a consistency of representation that makes it easier for all members of the
development team to reason about the system together. Generalisation and
specialisation in the specification can be reflected in the implementation to
make components easier to reuse. Extensions to the system can quite easily
be carried through from the specification (thus controlling how the system
evolves). Also, by using the combined top-down/bottom-up approach, the
development of the specification and implementation can take place in par-
allel. This is more realistic than a scenario in which an implementation team
is given a completed specification.

17

Structure was shown to be an important part of the design stage. It aids
understanding, and structure in the specification can, and should wherever
possible, be reused by the implementation (provided the specification models
objects in the real world).

This paper is based upon a small investigative case study. More work
needs to be done on:

e introducing the concepts of inheritance to the object-based work.

e applying this approach to a much larger project where the real benefit
of the object-based approach can be fully investigated.

e examining the exact nature of the relationship between the specifica-
tion(s) and implementation(s) produced in this way.

It has been shown that there is potential for applying this development
approach to other (more complex) systems. LOTOS seems an ideal vehicle
for producing designs of object-based distributed systems.

Acknowledgements

This work was funded by the British Telecom Group Technology and De-
velopment Services project on Formal Methods Application. It was carried
out as part of the author’s PhD research at Stirling University with financial
support from the Department of Education for Northern Ireland (DENTI).

The author acknowledges the contribution made by David Freer to the
case study. He was the primary C++ coder and also helped in system design.
Thanks also to the BT Formal Methods Unit (Ipswich): Steve Rudkin, Steve
Colwill, Jeremy Wilson, Rob Booth, Jim Lynch and Elspeth Cusack. Special
mention goes to Ken Turner, Bob Clark and Ashley McClenaghan in Stirling
for their support.

References

e [1]: S. Black, Objects and LOTOS, Draft Technical Report, Hewlett-
Packard Laboratories, Stoke Gifford, Bristol, October 1989.

18

[2]: R.G. Clark, Using LOTOS in the Object-Based Development of
Embedded Systems, Proceedings of the IMA Conference on the Unified
Computation Laboratory, Stirling University, July 1990.

[3]: B.J. Cox, Object Oriented Programming — an Fvolutionary Ap-
proach, Addison-Wesley, 1987.

[4]: E. Cusack, S. Rudkin, C. Smith, An Object Oriented Interpretation
of LOTOS, The 2nd International Conference on Formal Description
Techniques (FORTE 89), December 1989.

[5]: D. L. Davies, D. L. A. Barber, Computer Networks and their Pro-
tocols, Section 3, John Wiley, 1979.

[6]: P. Gibson, D. Freer, Applying LOTOS in an Object Oriented Devel-
opment Strategy: an investigative case study, BTRL, Formal Methods
Group, Internal Report, 1991.

[7]: B. Liskov, J. Guttag, Abstraction and Specification in Program
Development, MIT Press 1986.

[8]: LOTOS IS 8307, LOTOS — a Formal Description Technique based
on the Temporal Ordering of Observed Behaviour, 1988.

[9]: Bertrand Meyer, Object Oriented Software Construction, Prentice-
Hall International Series in Computing Science, 1988.

[10]: M. Schwartz, T. E. Stern, Routing Techniques used in Communi-
cation Networks, IEEF, Transactions on Communications, VOL COM.
28, No. 4, April 1980.

[11]: Bjarne Stroustrup, The C++ Programming Language, Addison-
Wesley, 1986.

[12]: A. S. Tanebaum, Computer Networks, Section 5.2 (pp 196 — 214),
Prentice-Hall, 1981.

[13]: K. J. Turner, Formal Description Techniques II, (pp 117 — 133),
A LOTOS Based Development Strategy, December 1989.

19

e [14]: C.A. Vissers, G. Scollo, M. van Sinderen and E. Brinksma, On
the Use of Specification Styles in the Design of Distributed Systems,
University of Twente, Fac. Informatics, 7500 AE Enschede, NL, 1989.

20

