
ar
X

iv
:1

61
1.

10
16

0v
1 

 [
cs

.S
E

] 
 2

9 
N

ov
 2

01
6

When Students Choose to Use Event-B in their

Software Engineering Projects⋆

J Paul Gibson1

SAMOVAR, Télécom Sud Paris, CNRS, Université Paris Saclay,
9 rue Charles Fourier, Evry Cedex, 91011 Paris, France

paul.gibson@telecom-sudparis.eu

Abstract. Students often learn formal methods as part of a software
engineering degree programme, without applying these formal methods
outside of the specific module(s) dedicated to this subject. In particular,
software engineering students often have to build a significant applica-
tion/program/system in a substantial project at the end of their pro-
gramme (in order to demonstrate the application of the things they have
learned during the previous taught modules). Our experience shows that
the majority of students do not use formal methods in this project work.
We report on feedback from the minority of students who *did* choose
to use formal methods in their projects, and give examples of where this
was a help and where it was a hindrance.

Keywords: Teaching , Formal Methods, Technology Transfer

1 Introduction

This paper reports on the continuation of a sequence of publications detailing
the author’s experience with teaching formal methods. In 1998 [1] reports on the
design and implementation of a first (for the authors) formal methods course:

“Our approach to teaching formal methods tries to give an overall pic-
ture rather than concentrating on any one method, language or tool.
We believe in letting the students discover the concepts and principles
themselves, wherever possible”

Two years later, our approach to teaching formal methods was integrated
into a module dedicated to requirements engineering[2]:

“Students are encouraged to question the need for formality — each
requirements engineering method is a compromise and the use of for-
mal models needs to be placed within the context of the choices that a
requirements engineer has to make”

In [3] there is an overview of our approach to weaving formal methods
throughout a software engineering programme, using problem based learning,
and discussion of the impact of formal methods on the quality of the software
that the students build:
⋆ This work was supported by grant ANR-13-INSE-0001 (The IMPEX Project
http://impex.gforge.inria.fr) from the Agence Nationale de la Recherche
(ANR).

http://arxiv.org/abs/1611.10160v1
paul.gibson@telecom-sudparis.eu
http://impex.gforge.inria.fr


2 Gibsonl

“Anecdotal evidence suggests that the better students adopt formal engi-
neering practices (like the specification of invariants) in projects on other
courses which follow their work on the formal methods problems (with-
out being told to do so). Furthermore, the software that these students
produce is better than that produced by the other students. However,
that should be no surprise as these are the better students!”

In [4], we report on the design of a complete software engineering postgrad-
uate degree programme, where rigour and formality are linked to modelling:

“All software engineering modules will be taught using a problem-based-
learning (PBL) approach. Emphasis will be on rigour and formality, and
mathematical modelling.”

It was at this point in the development of our software engineering program
that we decided to use Event-B[5] and the Rodin tool[6] as our ‘default’ formal
method (even though we continued to also use other methods). The decision
was based mainly on the positive feedback from various students regarding the
RODIN tool, for example:

“It was nice to have a formal methods IDE like Eclipse . . . you can re-
ally experiment with the models and the modelling process . . . it makes
the maths more like programming . . . its the first time I understood the
importance of invariants . . . etc.”

This paper makes a novel contribution to this sequence of work/publications
by reporting on the analysis and feedback (from the students) that we have
had since 2011. We are not claiming that this is a scientific study; rather, we
report on what we have observed, what the students have stated during feedback
interviews and after they have taken up employment after graduating.

The remainder of this paper is structured as follows. Section 2 provides a
brief review of relevant related work in the teaching of formal methods. Section
3 motivates the need for the type of study being reported in this paper. Section
4 provides information concerning the students who have participated in this
study (through the feedback that they have provided). Section 5 is the main
contribution of the paper, where we review the key observations and lessons to
be learned. In section 6, we conclude with some recommendations for teachers
of formal methods.

2 Related Work - teaching formal methods

In this section we report on previous work that has had the most influence on our
own approach to teaching formal methods. It is not intended as a comprehensive
review of the history and state-of-the-art.

It is important to note our work is concerned with teaching formal meth-
ods to (software) engineering students and not to computer science students[7].
Curriculum design for software engineering students requires making complex
trade-offs between the teaching of theory and practice[8,9]. One of the first books
dedicated to the subject of teaching formal method[10] identifies the role that



When Students Choose to Use Event-B 3

teachers play in improving the transfer of formal methods technology to indus-
try, through their students. At the turn of the century, a sizeable community
of formal methods teachers had grown and started to organise their own work-
shops concerned with establishing formal methods as a key part of the SoftWare
Engineering Body Of Knowledge (SWEBOK)[11]. The need for a “A Different
Software Engineering Text Book” was identified by Bjorner [12].

The need for scientific evidence supporting the importance of teaching formal
methods to software engineers was highlighted by Henderson [13]:

“Evidence supporting the importance of mathematics in software engi-
neering practice is sparse. This naturally leads to claims that software
practitioners dont need to learn or use mathematics. Surveys of current
practices reflect reality; many software engineers have not been taught
to use discrete mathematics and logic as effective tools. Education is the
key to ensuring future software engineers are able to use mathematics
and logic as powerful tools for reasoning and thinking.”

Before Event-B there was B[14]. Teaching formal methods using B is reported
in a number of papers, including: [15,16,17,18]

3 Motivation: technology transfer and best practice

The important role of students in the transfer of software engineering technology
to industry was illustrated by [19], where the technology in question was UML.
Parnas has argued that technology transfer of formal methods will fail because
“We cant sell methods that we dont use ourselves.”[20]. Our view is a reworking
of the phrase from Parnas – our students can’t sell formal methods if they don’t
choose to use them themselves.

Consequently, we wished to observe whether our students choose to use for-
mal methods when working on assessed projects that required the development
of software.

4 The Educational Context for our Observations

The MSc program was a 2 year program which ran between 2010 and 2014.
The student intake was global from 4 continents — Europe, Africa, Asia and
the Americas. Entry to the program was highly selective, with an acceptance
rate of between 10 and 20 percent. Subsequently, the number of students in each
year was relatively small with an average of 8 per year. As a consequence of the
small number of students, our analysis is not based on a scientific (statistically
significant) study. Instead, we report on the feedback from students gathered
through questionnaires, interviews and informal communication.

5 Observations and Lessons

We structure the observations based on whether the feedback was concerned
with project work, placement work or work since graduation.



4 Gibsonl

5.1 Use of formal methods in project work

At the end of the program, the students are expected to work on a signif-
icant software engineering project (3-person months per student). They can
choose to work in teams or individually. They are free to use whatever tech-
niques/tools/languages/processes that they wish, but they must justify their
choice based on the exact nature of the project on which they were working.

After seeing formal methods throughout the program, as well as having a
module dedicated to teaching them Event-B and Rodin, we were hoping that
the majority of students would write formal specifications in order to model key
requirements and/or design issues.

Over the 4 year period, only 3 projects from a total of 14 incorporated signifi-
cant models in Event-B. These 3 projects were ranked (over the 4 years) in places
1, 3 and 13. The 2 ‘top’ projects were submitted by the best students (based on
performance on all modules). They chose to write Event-B models because: “
. . . we wanted to get a better understanding of the rules of the game that we were
developing.”, and “. . . the application was safety critical and we wanted to be
sure that the design of the communication protocol was correct.”. For the highest
marked project, the team produced a poker game, modelled the rules formally
and verified that the operator for ranking hands was based on a transitive rela-
tionship. During their development, the RODIN tool helped them identify ‘bugs’
in their models concerned with misunderstanding of different types of hand. The
second project using formal methods developed an android application for use
by emergency services when arriving at the scene of an accident. A main issue
was how data could be communicated to/from the hospital as effectively as pos-
sible. They designed a protocol for the communication but worried that it could
lead to deadlocks in the interface. They successfully modelled the protocol in
Event-B but were unable to express (or consequently prove) the required prop-
erty. The project ranked 13 was submitted by a group who chose to use formal
methods because they thought that: “ . . . that was what the teacher was look-
ing for.”. They worked on a parallel implementation of a genetic algorithm for
pattern recognition. Unfortunately, their lack of experience and ability in formal
methods meant that they never finished the specification phase of development,
and when they started design and code they were very behind schedule.

Students from projects that chose not to use formal methods were interviewed
after they received their evaluations. Two of the groups regretted not writing a
formal specification because they had significant problems arising from the team
members having inconsistent understanding of their requirements. All groups
reported choosing not to use them because they didn’t feel that they needed
them, and that they wanted to use more agile development approaches (which
they felt were not suited to formal methods).

5.2 Use of formal methods during placement

Through analysis of the student placement reports, and through their presen-
tations, we were able to evaluate the degree of use of formal methods by the
students during their placements. We classified the use at 4 different levels:

1. Using formal methods was a critical requirement of the placement (2 stu-
dents)



When Students Choose to Use Event-B 5

2. The student was required to use formal concepts, such as invariants in code,
during their placement but there was no dedicated formal methods tool (6
students)

3. The student was not required to use formal methods, but they were able to
use them in their own work. (1 student)

4. The student was not required to use formal methods, and did not use them
(20+ students)

It is, perhaps, not surprising that so few students used formal methods during
their placements. The 2 students who were obliged to use them had been placed
in research and development environments (in education and in industry) where
formal methods tools were being developed. The 6 students who were required to
use formal concepts were working in safety-critical domains such as the aerospace
and health sectors. The one student who chose to try and use formal methods,
even though they were not required, reported: “a certain frustration that my
co-workers found it amusing that I would wish to use mathematical models”.

5.3 Use of formal methods after graduating

A significant minority of students(8 in total) stay in regular contact with us after
graduating. None of them are working in an environment which uses formal
methods. A handful of them believe that the quality of their work would be
improved through the use of formal methods.

6 Conclusions: recommendations for teachers

Although our report is based on a small number of observations, it is worrying
that Parnas appears to be (at least partially) correct when he stated that we will
not be able to transfer formal methods technology from academia to industry.

It is not the teachers’ role to force their students to use formal methods.
Successful teaching of formal methods will motivate students to use them because
they believe in them. We, as teachers, need to better monitor students during
the whole of their academic careers (and after) to measure the use of formal
methods, together with the impact of their use on the quality of software being
developed. We also need to better support students who wish to introduce formal
methods technologies in their workplace.

References

1. Gibson, J., Méry, D.: Teaching formal methods: Lessons to learn. In Flynn, S., But-
terfield, A., eds.: 2nd Irish Workshop on Formal Methods (IWFM 1998). Electronic
Workshops in Computing, Cork, Ireland, BCS (July 1998)

2. Gibson, J.: Formal requirements engineering: Learning from the students. In
Grant, D., ed.: 12th Australian Software Engineering Conference (ASWEC 2000),
Canberra, Australia, IEEE Computer Society (2000) 171–180

3. Gibson, J.: Weaving a formal methods education with problem-based learning.
In Margaria, T., Steffen, B., eds.: 3rd International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation. Volume 17 of Com-
munications in Computer and Information Science (CCIS)., Porto Sani, Greece,
Springer-Verlag, Berlin Heidelberg (October 2008) 460–472



6 Gibsonl

4. Gibson, J., Raffy, J.L.: A future-proof postgraduate software engineering pro-
gramme: Maintainability issues. In: The Sixth International Conference on Soft-
ware Engineering Advances(ICSEA 11), Barcelona, Spain (October 2011) 471–476

5. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

6. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in event-b. Int. J. Softw. Tools Technol.
Transf. 12 (November 2010) 447–466

7. Parnas, D.L.: Software engineering programs are not computer science programs.
Software, IEEE 16(6) (1999) 19–30

8. Garlan, D.: Formal methods for software engineers: Tradeoffs in curriculum design.
In: Software Engineering Education. Springer (1992) 131–142

9. Garlan, D.: Making formal methods education effective for professional software
engineers. Information and Software Technology 37(5) (1995) 261–268

10. Dean, N., Hinchey, M.: Teaching and learning formal methods. Morgan Kaufmann
(1996)

11. Almstrum, V.L., Dean, C.N., Goelman, D., Hilburn, T.B., Smith, J.: Support for
teaching formal methods. SIGCSE Bull. 33(2) (2001) 71–88

12. Bjørner, D.: On teaching software engineering based on formal techniques -
thoughts about and plans for - a different software engineering text book. J.
UCS 7(8) (2001) 641–667

13. Henderson, P.B.: Mathematical reasoning in software engineering education. Com-
munications of the ACM 46(9) (2003) 45–50

14. Abrial, J.R.: The B Book - Assigning Programs to Meanings. Cambridge University
Press (1996)

15. Leuschel, M., Samia, M., Bendisposto, J., Luo, L.: Easy graphical animation and
formula visualisation for teaching b. In: Formal Methods in Computer Science
Education (FORMED). (March 2008)

16. Habrias, H.: Teaching specifications, hands on. In: Formal Methods in Computer
Science Education (FORMED). (March 2008) 5–15

17. Mry, D.: Teaching programming methodology using event b. In Habrias, H., ed.:
The B Method: from Research to Teaching. (June 2008)

18. Guyomard, M., Alain, P., Hadjali, A., Jaudoin, H., Smits, G.: First balance sheet
of a formal approach in the teaching of data structures. The B method: from
Research to Teaching 66–91

19. Hallinan, S., Gibson, J.: A graduate’s role in technology transfer: From require-
ments to design with UML. In Kokol, P., ed.: IASTED International Conference on
Software Engineering, part of the 23rd Multi-Conference on Applied Informatics,
Innsbruck, Austria, IASTED/ACTA Press (2005) 94–99

20. Parnas, D.L.: ”formal methods” technology transfer will fail. Journal of Systems
and Software 40(3) (1998) 195–198


	When Students Choose to Use Event-B in their Software Engineering Projects
	1 Introduction
	2 Related Work - teaching formal methods
	3 Motivation: technology transfer and best practice
	4 The Educational Context for our Observations
	5 Observations and Lessons
	5.1 Use of formal methods in project work
	5.2 Use of formal methods during placement
	5.3 Use of formal methods after graduating

	6 Conclusions: recommendations for teachers


