Teaching Graph Algorithms
To Children Of All Ages

J. Paul Gibson
Départment LOR (SAMOVAR UMR 5157)
Telecom Sud Paris, France
paul.gibson @it-sudparis.eu

ABSTRACT

We report on our experiences in teaching graph theory and
algorithms to school children, aged 5 to 17. Our objec-
tives were to demonstrate that children can discover quite
complex mathematical concepts, and are able to work with
abstractions and use computation reasoning from quite an
early age. We provide details of our incremental approach,
which can be used with students of a wide range of abili-
ties. Also, we comment on the importance of problem based
learning where the algorithms are presented as possible so-
lutions to games or puzzles. Finally, we conclude with a
number of important observations with regard to the intro-
duction of computer science into schools.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education
]: Computer science education; G.2 [Discrete Mathemat-
ics]: Graph Theory—Graph algorithms

General Terms

Human Factors, Experimentation

Keywords

Computational thinking, K-12 education, Problem based
learning, Modelling, Abstractions

1. INTRODUCTION

There has been much recent debate concerning the teach-
ing of computer science in schools. Within the computer
science community (acdemia and industry) there is general
agreement that computer science is not about how to use a
computer through the applications that it can execute, but it
is about knowing how these applications work. For example,
in the UK the NextGen 2011 report on CS education criti-
cises “a school curriculum that focuses in ICT on office skills
rather than the more rigorous computer science and pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITiCSE’12, July 3-5, 2012, Haifa, Israel.

Copyright 2012 ACM 978-1-4503-1246-2/12/07 ...$10.00.

34

gramming skills which high-tech industries [...] need”. Sim-
ilar stories and reports have appeared in the media around
the world, with politicians and policy-makers finally listen-
ing to the message. (For example, Michael Bloomberg, the
mayor of New York, has publically endorsed a course on
learning to program that he is taking, and which is target-
ted at school children.) We welcome these recent events,
even if we strongly believe that computer science in schools
needs to be broader than just learning to program[9]; it
needs to be about computational thinking[23], algorithmic
thinking[8] and algorithmic learning[12]. Programming in
schools is important, but teaching about abstraction may
be even more so[18].

This paper supports the move towards this new type of
computer science education. However, we note that in mak-
ing such an educational change, one should not forget about
the teachers who are expected to teach this “new” material.
It is critical that teachers understand computer science if
they are to teach it well. Such an observation has already
been made by Ball[l] with respect to mathematics educa-
tion, where she notes (page 36):

“Making the judgments about which student
suggestions to pursue, developing the tasks that
encourage certain kinds of exploration, and con-
ducting fruitful class discussions — all these tasks
depend heavily on the teacher’s subject matter
knowledge”

In the same report (page 37), a teacher acknowledges the
importance of learning while teaching;:

“When I decided to be a teacher, I knew there
were a lot of things I had to learn about teaching,
but I felt I knew everything there was to teach my
students. [...] I found I was as much a learner
of subject matter as I was a learner of the art of
teaching. My education in the future will not be
limited to ‘how to teach’, but also what it is I'm
teaching.”

We propose that the best way to prepare teachers of com-
puter science is for them to actually teach it. Thus, ex-
perimental computer science sessions should be introduced
into the classroom in order to teach the teachers, as well as
to introduce computer science to the students, and to help
develop or improve the computer science curriculum. This
would address many of the issues raised by Guzdial[13] when
he states:

“We need more education research that is in-
formed by understanding CS — how it’s taught,

what the current practices are, and what’s im-
portant to keep as we change practice.”

Our research was motivated by the Bruner’s famous edu-
cational challenge from 1960[4](page 33):

“We begin with the hypothesis that any sub-
ject can be taught effectively in some intellec-
tually honest form to any child at any stage of
development. It is a bold hypothesis and an es-
sential one in thinking about the nature of a cur-
riculum”

We wished to validate this hypothesis within the domain of
computer science, and chose the subject of graph algorithms
as our test case. This subject is foundational to all computer
science and it provides an excellent example of the impor-
tance of mathematics[15] and the mathematical nature of
algorithms and programming[20].

The structure of the remainder of the paper is as follows.
In section 2 we provide a brief review of recent related work.
Section 3 provides details concerning some of the sessions
that we have run in schools. During the sessions, a number
of important observations were made: section 4 reports on
these. In section 5 we conclude the paper and make sugges-
tions for future work.

2. RELATED WORK

Previous work that has most unfluenced our research falls
under the following themes —
1. Teaching computer science without using a com-
puter: The CS Unplugged programme as first introduced by
Bell[2] inspired and motivated our teaching in the classroom,
where the computer is no longer a distraction to learning
about computing.
2. Preparing school teachers to teach computer sci-
ence: Hazzan et al.[14] propose a model for high school
computer science education, where our paper makes a contri-
bution to 3 of the 4 key elements that they identify: teacher

preparation, pedagogic research and curriculum development.

3. Teaching computer science to young children:
Work with very young children has been reported by Gib-
son, where children of all ages (starting from 5) have been
introduced to formal methods through reasoning about al-
gorithms and proofs[11]. Many different programming lan-
guages have been developed specifically for teaching chil-
dren. Feurzig et al., as early as 1969, proposed using pro-
gramming to teach about mathematics[7] and demonstrate
how the programming language LOGO can be used by young
children. More recently researchers have reported success in
schools with languages oriented towards children (and be-
ginners) such as Alice[17]. Further, evidence suggests that
young children are also able to program using standard (real
world) languages such as Java[10]. Teaching young children
about computers and computer architecture has been the
subject of research by Bianco and Tinzanni[3], where they
use interactive stories to introduce the main concepts. This
approach could be complementary to our use of stories when
describing the problems to be solved.

4. Teaching (graph) algorithms: Researchers have also
suggested teaching algorithms during mathematics classes in
schools. A typical example is from daRosa[6], where sorting
and searching algorithms are used to teach about algorithm
analysis. There has been much research into innovative ways

35

of teaching graph algorithms, with most results focussing on
animation and simulation[5]. However, such tools are aimed
at University level students rather than for use in schools.
5. Teaching using puzzles and games: Levitin and Pa-
palaskari propose using games and puzzles in the teaching
of algorithms[19] and this approach has been successsful in
other computing disciplines[21], including topics such as op-
erating systems[16]. More formal resoning about algorithms
has also been linked to puzzles and games[12].

It is beyond the scope of this paper to review all relevant
publications in the teaching of computing at schools. We
choose to conclude this section by referencing a paper, by
Pollard and Duvall[22], that considers the knowledge trans-
fer in the other direction: namely from schools to university.
It is worthy of note that they comment on the how teach-
ing CS at University could be improved and informed by
experiences with teaching at kindergarten.

3. THE INCREMENTAL PBL APPROACH

Our teaching approach is founded on a sequence of ses-
sions where we (aided by the teachers) work through each
session at a speed that is dictated by the age and ability
of the class. No session in the sequence should be skipped,
but all sessions are open-ended so that more advanced stu-
dents can advance at their own pace. Due to lack of space,
we report only on 4 sessions that we run (each of these ses-
sions can take between 30 minutes and 4 hours, depending
on the students). Each session is divided into classes whose
duration is also dictated by the level of the students. The
youngest students may have 30 minute classes whilst older
students may manage 90 minute classes. Our approach is
to be as flexible as possible, and to follow the advice of the
teacher (who is always present). All schools involved were
non-fee paying and could be considered typical, with pupils’
abilities following an unexceptional normal distribution.

At this experimental stage, we have no fixed learning ob-
jectives: the goal is to observe the students and to assess
the impact of the classes on their general school behaviour
and performance. We believe that improving their compu-
tational thinking — with emphasis on abstraction — will
have a positive impact on all other classes that they study.
We return to this claim in section 4.

3.1 The first session: graph concepts

This session was one of the first that we tried when we
first started visiting schools more than ten years ago. It
has been run twelve times in five different schools (in Ire-
land and France) and with five different age groups — the
youngest group aged 5-6, the oldest group aged 14-15. The
class sizes varied from 12 to 32 children. In the first few
years in which we ran the sessions, we focused on the oldest
pupils at primary school (aged 10-11). Then we extended
the session with more difficult puzzles in order to use it with
the oldest group of children (from secondary school) who
were participating in a summer science camp. Finally, in
the last year, we have adapted the session for very young
children and have used it in two different classes.

Working with the youngest school children, one cannot
assume that they are able to read or write. Consequently,
with our first lessons we are obliged to use less abstract forms
of ‘language’ for describing graphs. Rather than inventing
such languages, we try to adapt the skills of the children to
the creation of their own syntax and semantics.

Experience has shown that the youngest children are par-
ticularly motivated by drawing. Thus, we introduce a draw-
ing game, whereby we restrict them to using only circles and
lines. The game is to construct drawings — using paper and
pencils — that have to follow rules that are specified using
spoken natural language. For example, we start by asking
them to draw “two circles connected by a single line”. Typ-
ically, we see a variety of drawings, such as seen in figure 1.
(Note that we have coloured the drawings to clarify the il-
lustration, but that — at this stage in the session — the
children do not yet use different colours in their drawings.)

Figure 1: Two circles connected by a single line

The children than get to vote on which drawings follow the
rule, and comment on whether the rule was easy to under-
stand. At this stage, they are unsure about which drawings
are right and which are wrong — so we tell them that all
(within reason) are right but some are better than others.
They will get to judge on which are best as they are asked
to carry out more drawings.

After a few more examples we introduce colours for the
circles. A typical puzzle will be for them to draw “a red circle
connected to a blue circle and a green circle connected to a
red circle”. The two most interesting variations of drawings
proposed for this problem are shown in figure 2)

—0
- —0

Figure 2: Red-Blue and Green-Red

At this stage, the students openly discuss about how to
decide whether 2 drawings are the same, posing questions
such as:

Does it matter if the lines are straight or curved?
Can the circles touch?

Can one circle be inside another?

Where can the lines start/stop?

Does it matter if the circles are different sizes?

36

Can the lines cross?

Do the circles have to be aligned vertically or hor-
1zontally?

Does the distance between the circles matter?

It is important to let the students decide on the answers
to these questions, and very important that they understand
that they can change their answers as the session progresses.

The two graphs in figure 2 usually lead to clear disagree-
ment in the class, with 3 different opinions coming to the
fore:

e The 2 drawings (we start to call them graphs in the
next session) are correct and so they can be considered
to be the same (or equal or equally good)

e The 2 drawings are correct but they are different
e Only 1 of the drawings is correct.

The final case usually involves heated argument concerning
the meaning of the word ‘and’, as the students who agree
that only one drawing is correct cannot agree which one.

We next introduce a description game, where the teacher
no longer describes what is to be drawn (using only circles
and lines) but the children have to do a drawing and to
describe it to a partner, who has to reproduce the draw-
ing without seeing their partner’s original creation. The
teams (in pairs) are awarded points when the rest of the
class agrees that the two drawings are the same. Now, due
to the competitive nature of the game, students identify the
need to agree on rules for ‘sameness’. Interestingly, when
they re-assess the drawings in figure 2 the students almost
always state that they are not the same because the number
of circles is different. Asked who is to blame for their initial
confusion, they usually state that the description from the
teacher should have been better.

The next step is to introduce the concept of a property of a
drawing that can be checked even if it is not mentioned in the
description. We start with the idea of connectivity. Students
have no problem in identifying connectivity in the left side
of figure 2, and absence of connectivity in the right side.
More advance students will even start to define connectivity
in terms of paths.

For younger students, who cannot read or write, we now
use the drawings as building plans for constructing models
of coloured balls connected by string. These children are
quite comfortable following such plans (from games such as
LEGO) and so find no difficulty in making the constructions.
The advantage with this approach is that the constructions
are flexible and even when they change shape the students
consider them not to have changed. This is the beginning of
them starting to reason about semantics in terms of equiva-
lence classes, and they return to the rules concerning same-
ness in the description game.

For students who are able to read and write, we introduce
another challenge: to write down a textual description of the
drawings using as few letters as possible. In the beginning
they just write the natural language description, but the
game environment motivates them to find a more concise,
unambiguous syntax. Typically, the students will describe
the drawings in figure 2 in the following sequence of improve-
ments: “Red to Blue and Green to Red”, “Red-Blue,Green-
Red”,“RBGR”. At this stage, we ask about the equivalence of
two textual descriptions. For example, is “RBGR” the same

as “GRRB” or “RRBG”? Further we ask about the mean-
ing of strings such as “RBGRR” where there is redundant
information in the textual description. In later sessions we
return to this type of issue when we look at using graphs to
describe languages or strings in a password game.

Finally, with the oldest students, we ask them to reason
about paths. We ask if there is a path from red to blue
and a path from red to green then is there a path from
blue to green. This leads to interesting questions concern-
ing whether paths are uni-directional or bi-directional, and
whether different circles can have the same colour. To fur-
ther the discussion, we ask if it would make any difference
if the circles were locations (towns, for example) instead of
colours. The question of which drawing is correct is then
addressed when we talk to them about merging 2 drawings
(in order to merge paths). In the merge game, we divide the
textual description into two parts and give a single part to
each member of a pair. We then ask them to merge their
individual drawings into one. Most pairs perform a merge
as seen in the right of figure 2. However, when asked “if
there is a path from townl to town2 and a path from town2
to town3 then must there be a path from townl to town3?”,
students often spend some time rethinking the merging puz-
zle. They start to see that merging as in the drawing on
the left of figure 2 may be more useful when thinking about
paths.

To complete this first session we ask the oldest students to
reason about the drawings by considering only the textual
representation. For example, we introduce the concept of a
circuit (where lines are uni-directional) and ask them to read
the textual description of a drawing (following their own syn-
tax) and decide whether there is a circuit or not. With the
visual representation the students spot circuits immediately
but find it very difficult to explain how they do it. With the
textual representation there is a real struggle to check for a
circuit (initially) but when they explain how they do it (or
try to do it) we see the start of an algorithmic reasoning,
and abstract modelling.

3.2 A simple session: algorithmic concepts

Not all of the schools participated in this follow-up session:
the 2 largest classes did not continue (but feedback from the
teachers led us to believe that the size of the class had no
influence on their decision to stop).

It has been run eight times in three different schools (in
Ireland and France) and with four different age groups —
the youngest group aged 5-6, the oldest group aged 14-15.
The class sizes varied from 12 to 28 children. The subgraph
problem was our first attempt to observe algorithmic rea-
soning.

To start, we explain the concept and terminology of graphs
and subgraphs through the operation of erasing lines and cir-
cles in drawings (or removing balls and strings in the phys-
ical constructions). We then provide 2 drawings and ask
whether one can be made simply through erasing or remov-
ing elements of the other.

It is interesting to note that nearly all students count the
circles (balls) because they intuitively know that the sub-
graph cannot have more balls than its supergraph. However,
very few count the number of lines (pieces of string).

In figure 3, we show a typical subgraph problem that stu-
dents of all ages are able to reason about: are any 2 of the
3 graphs related by the subclassing relation?

37

Figure 3: Typical Subgraph Problem

We then give them the same problem, but with all the
balls being the same colour. This is quite challenging for
the younger children, but the older children enjoy the puz-
zle for graphs of large numbers of circles (balls). What is
interesting — for us — is to see how the older students rise
to the challenge of checking for a subgraph when they have
only the textual representations to play with and manipu-
late.

3.3 An intermediate session: shortest paths

This session has been run five times in two different schools
(in Ireland and France) and with two different age groups —
the youngest group aged 8, the oldest group aged 14-15. The
class sizes varied from 20 to 28 children. We note that stu-
dents younger than 8 were not asked to participat: speaking
to the teachers we realized that the younger children did not
have enough understanding of length (or size) to be able to
reason about shortest paths.

To begin, we introduce the notion of different types of line.
First we start with colours (and coloured string). Then we
cut the coloured string into fixed constant integer lengths
(in cms). The younger students can then measure paths
in a relative fashion by joining up strings and comparing
their lengths. The older children quickly tire with measur-
ing strings and ask if they can just write the numbers beside
the coloured lines. As a final step, they forget about colour-
ing the lines and just write the numbers. At this point we
introduce the puzzle of finding shortest paths in graphs.

We start with a very small example, and build it up in a
number of steps, as illustrated in figure 4.

With the more advanced students, we allow them to col-
lectively construct their own graphs — on the black/white
board at the front of the class — to see who can find the
shortest path between a start and end colour, in a limited
amount of time. The students often wish to make things as
complicated as possible so they add lines with enormous val-
ues (usually integers with 10+ digits), they also “sneakily”
add lines with zero values, and in some instances negative
values. A typical student constructed shortest path problem
will look like the graph in figure 5.

After playing with a number of such puzzles, the students
are invited to make comments, ask questions, propose an-
swers to questions and to try out new instances of the prob-
lem to demonstrate the issues at hand. Interestingly, differ-
ent classes often address the same issues:

Does it matter if you flip the start and end points?

Redto orange

Redto purple 20

Red to purple

Figure 4: Shortest Path Problems — Increasing in
difficulty

2000000000

Red to purple

Figure 5: A typical student-generated shortest path
problem

Can you ignore parts of the graph (as in links
with values 5 and 3 in figure 5)?

What happens if a negative value is in a loop?
Is it always best to take the path with the least
value from your current position in the graph?
Is it always best to avoid the path with the biggest
value from your current position in the graph?
Is the shortest path (in terms of the sum of the
values) always the shortest in terms of the num-
ber of connections?

Is it more difficult to find the longest or the short-
est path?

The role of the teacher is not to answer such questions but to
encourage the students to think about them amongst them-
selves. It is surprising how many times they find the right
answer through collective discussion and creation of counter-
examples.

3.4 Formal reasoning

Once the students have developed a thirst for reasoning
about problems like the shortest path, we attempt to get
them to reason using what they know about integer mathe-

38

matics, together with their intuitive understanding of prop-
erties of graphs.

A good step for this is to introduce a problem, often as a
story that involves a puzzle. For example, with the shortest
path, we can phrase the problem in terms of a magician who
wishes to get to a certain town and the links are distances to
travel between towns. In some cases, towns are not directly
connected because of physical or magical barriers.

We state that the magician already knows the shortest
path between any two towns, through the large number of
trips that he has made in the last few years. However, he has
now been given a magic transporter wand which he can use
once only for every trip in order to travel along an existing
road without incurring any cost (distance or time). The
question is, how does he know where he should use the wand
when making the trip.

Most children, without hesitation, choose to use the wand
on the connection with the highest value (on the known
shortest path). We ask them to explain why. It is usu-
ally only through trying to “prove” that they are right, that
they see that they are wrong. At this point the next most
common suggestion is to just use the wand on the connec-
tion with the largest value (anywhere in the graph). Again,
it does not take them long to see that this reasoning is also
wrong. After multiple similar attempts, we explain to them
that this is not a simple problem and that finding the solu-
tion is a good example of computer science in action. At this
point we introduce the notion of an algorithm and proving
that an algorithm is correct.

4. IMPORTANT OBSERVATIONS

Our experience shows that these sessions work only if
there is an enthusiastic teacher involved. It is not critical
that the teacher has each session explained to them before-
hand — they can participate and interact with the children,
learning with them rather than teaching them. However,
it is also sometimes useful that the teacher is prepared for
a particular session in advance — in order to better ob-
serve the childen learning instead of being wrapped up in
the learning process themselves. When possible, it is best
to have 2 teachers involved — an observer and a participant.
These teachers can swap roles in order to get a better under-
standing of the learning process and the computer science.

Children who lacked confidence in fundamental skills such
as literacy and numeracy often gained confidence from play-
ing with the graphs and the graph problems. They were
delighted to see that sometimes there was not just a right
answer and a wrong answer — and that every answer (even
their own) had good points, as well as bad. As a result,
many of these classes have had an indirect positive impact
on students’ peformance throughout their schooling; and
even though some of the teachers involved were sceptical
at first, their feedback became more positive as the sessions
progressed.

It is possible to base a whole semester of work around
these graph sessions (for students ranging from 5 to 17 years
old). The key is for each session to naturally progress into
the next, and at the same time for the teacher be ready to
add ever more difficut challenges to any particular session.

For the older students, we saw that they quite naturally
started to work on algorithmic solutions to some problems
by looking at the textual descriptions (using their own ab-
stract syntax). The better students even asked about choos-

ing the best syntax to help solve the problems. Thus, they
discovered the link between data structures and algorithms.

S. CONCLUSIONS AND FUTURE WORK

This research is purely observational and we have not col-
lected hard data in order to test any hypotheses that we
may have about this teaching approach. An empirical study
across many different classes could lead to interesting results.
However, this paper is more about convincing teachers and
CS educators to try out this type of educational process in
schools near to them.

A long term research goal is a curriculum for teaching
computer science to children as soon as they go to school
— that is primary school, not secondary school. Children
aged from 5-11 have so much potential for learning about
algorithms and computation that it would be a shame to
wait until they are teenagers before we teach them the foun-
dations. We believe that our work shows that you can start
teaching computer science before students even know how
to read and write.

We have risen to the challenge of Bruner — as stated in the
introduction to this paper — and we have shown, through
our teaching of graph algorithms, that this small, but im-
portant, part of computer science can be taught effectively
to most children of school age. The challenge is to extend
this to cover as much of our discipline as possible.

6. REFERENCES

[1] D. Ball, U. S. O. of Educational Research, and
Improvement. Research on teaching mathematics:
Making subject matter knowledge part of the equation.
National Center for Research on Teacher Education,
Michigan State University, 1988.

[2] T. Bell. A low-cost high-impact computer science
show for family audiences. 23rd Australasian
Computer Science Conference, 00:10-16, 2000.

[3] G. M. Bianco and S. Tinazzi. One step further the
ACM K-12 final report: a proposal for level 1:
computer organization for K-8. In ITICSE ’06:
Proceedings of the 11th annual SIGCSE conference on
Innovation and technology in computer science
education, pages 207-211, New York, NY, USA, 2006.
ACM.

[4] J. Bruner. The process of education. Harvard
University Press, 1960.

[5] M. D. Byrne, R. Catrambone, and J. T. Stasko.
Evaluating animations as student aids in learning
computer algorithms. Comput. Educ., 33:253-278,
December 1999.

[6] S. da Rosa. Designing algorithms in high school
mathematics. In C. N. Dean and R. T. Boute, editors,
TFM, volume 3294 of Lecture Notes in Computer
Science, pages 17-31. Springer, 2004.

[7] W. Feurzeig, S. Papert, M. Bloom, R. Grant, and
C. Solomon. Programming-languages as a conceptual
framework for teaching mathematics. SIGCUE
Outlook, 4:13-17, April 1970.

[8] G. Futschek. Algorithmic thinking: The key for
understanding computer science. In R. Mittermeir,
editor, ISSEP, volume 4226 of Lecture Notes in
Computer Science, pages 159-168. Springer, 2006.

39

[9] J. Gal-Ezer, C. Beeri, D. Harel, and A. Yehudai. A
high school program in computer science. IEEE
Computer, 28(10):73-80, 1995.

J. P. Gibson. A noughts and crosses Java applet to
teach programming to primary school children. In J. F.
Power and J. Waldron, editors, Proceedings of the 2nd
International Symposium on Principles and Practice
of Programming in Java (PPPJ 2003), volume 42 of
ACM International Conference Proceeding Series,
pages 85-88, Kilkenny City, Ireland, 2003. ACM.

J. P. Gibson. Formal methods — never too young to
start. In Z. Istenes, editor, Formal Methods in
Computer Science Education (FORMED 2008), pages
151-160, Budapest, Hungary, Mar. 2008.

J. P. Gibson and J. O’Kelly. Software engineering as a
model of understanding for learning and problem
solving. In ICER ’05: Proceedings of the 2005
international workshop on Computing education
research, pages 87-97, New York, NY, USA, 2005.
ACM.

M. Guzdial. Learning how to prepare computer science
high school teachers. Computer, 44:95-97, 2011.

O. Hazzan, J. Gal-Ezer, and L. Blum. A model for
high school computer science education: the four key
elements that make it! In Proceedings of the 39th
SIGCSE technical symposium on Computer science
education, SIGCSE ’08, pages 281-285, New York,
NY, USA, 2008. ACM.

O. Hazzan and I. Hadar. Reducing abstraction when
learning graph theory. Journal of Computers in
Mathematics and Science Teaching, 24(3):255, 2005.
J. M. D. Hill, C. K. Ray, J. R. S. Blair, and C. A.
Carver, Jr. Puzzles and games: addressing different
learning styles in teaching operating systems concepts.
SIGCSE Bull., 35:182-186, January 2003.

C. Kelleher, R. Pausch, and S. Kiesler. Storytelling
alice motivates middle school girls to learn computer
programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
CHI ’07, pages 1455-1464, New York, NY, USA, 2007.
ACM.

J. Kramer. Is abstraction the key to computing?
Commun. ACM, 50(4):36-42, 2007.

A. Levitin and M.-A. Papalaskari. Using puzzles in
teaching algorithms. SIGCSE Bull., 34:292-296,
February 2002.

P. Martin-Lof. Constructive mathematics and
computer programming. Logic, Methodology and
Philosophy of Science VI, pages 153-175, 1982.

B. Parhami. Puzzling problems in computer
engineering. Computer, 42(3):26-29, 2009.

S. Pollard and R. C. Duvall. Everything I needed to
know about teaching I learned in kindergarten:
bringing elementary education techniques to
undergraduate computer science classes. SIGCSE
Bull., 38:224-228, March 2006.

J. Wing. Computational thinking and thinking about
computing. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, 366(1881):3717-3725, 2008.

(10]

(13]

(14]

(15]

(16]

(17]

23]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

