
Software Reuse and Plagiarism: A Code of Practice

J Paul Gibson
Telecom & Management SudParis
9 rue Charles Fourier, Evry, France
paul.gibson@it-sudparis.eu

ABSTRACT
In general, university guidelines or policies on plagiarism are
not sufficiently detailed to cope with the technical complex-
ity of software. Software plagiarism can have a significant
impact on a student’s degree result, particularly in courses
were there is a significant emphasis on large-scale projects.
We argue that a policy for software reuse is the most explicit,
and fair, way of overcoming this problem. In our policy, we
specify the notion of software to cover all the documents
that are generally built during the engineering of a software
system — analysis, requirements, validation, design, veri-
fication, implementation and tests. Examples are used to
show acceptable and unacceptable forms of reuse, mostly at
the design, testing and implementation stages. These exam-
ples are represented in Java, although they should be easily
understood by anyone with software engineering experience.
We conclude with a simple code of practice for reuse of soft-
ware based on a file-level policy, combined with emphasis on
re-using only what is rigorously verified.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; K.7.4
[The Computing Profession]: Professional Ethics—Codes
of good practice

General Terms
Documentation, Legal Aspects

Keywords
Plagiarism, ethics, software re-use, testing, student projects

1. SOFTWARE REUSE AND PLAGIARISM
This paper is based on a code of practice that was first

presented in an internal technical report [7] that was pro-
duced in response to a perceived problem of plagiarism in
final year projects of computer science and software engi-
neering students. These projects are the assessed work in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’09, July 6–9, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-381-5/09/07 ...$5.00.

which undetected (and unpunished) plagiarism can have the
most impact on a student’s degree result. Consequently, we
proposed a policy for software reuse as the most explicit (and
fair) way of overcoming the problems that arise in prevent-
ing, detecting, assessing and punishing project work that
contains plagiarised material. In the 6 years that have fol-
lowed the creation of this code of practice, the author of
the report has moved to a new higher-level institute where
he has lectured students on the issue of plagiarism (as part
of teaching about ethics in software development) and this
article reports on the impact that this has had on student’s
re-use of secondary material in their own assessed project
work.

1.1 Plagiarism
At all stages of education and learning, students’ reuse of

other peoples’ work and ideas is fundamental and it is to
be encouraged. What is not encouraged is when the work
of another person is presented as a student’s own. This is
plagiarism and must not be tolerated.

It is each student’s responsibility to ensure that when they
include (directly or indirectly) the work of others that this
contribution is fully and properly acknowledged. Guidelines
on the acknowledgment of the work of others can be found in
a text by Gordon Harvey [9]. Professional bodies (with pub-
lishing houses) also provide generic guidelines on plagiarism
— the ACM student magazine Crossroads is a good example
for students [10]. Universities generally have their own poli-
cies (or guidelines) on plagiarism. Individual departments
may also provide more specific guidelines and one must be
careful that these documents are consistent.

In our experience, however welcome these documents are,
they do not cover many of the more difficult, technical issues
which arise when the work that is being re-used is software.
It is the role of a code of practice to try and clarify what
is meant by plagiarism in this context. This article is con-
cerned with such a code of practice; it is not about defin-
ing different types of source code plagiarism [4] — although
research into formalising plagiarism types in software engi-
neering is complementary to our work. Furthermore, we do
not present any new results on plagiarism detection [14, 2,
11] — although such research is necessary for students to
be convinced that the risk of detection is high. We also do
not provide any new ideas concerning policy for punishing
plagiarism, but we do agree that a holistic approach is re-
quired [12]. Finally, this article is not a rigorous analysis of
whether the problem of plagiarism is increasing or decreas-
ing in students’ software projects — although our personal
experience does reflect the more formal analysis that has

55

been carried out in demonstrating that the problem is grow-
ing [1].

1.2 Software Engineering and Re-use
In software engineering, software is usually not built from

scratch. Normally, already existing software artifacts (from
the set of documents and models that are built during the
engineering of a software system - analysis, requirements,
validation, design, verification, implementation, tests, main-
tenance, versioning and tools) are re-used, in a wide range
of ways, in the construction of a “new” software system.

Software re-use is one of the least-well understood ele-
ments of the software engineering process. It is much more
challenging to re-use software artifacts in a controlled, sys-
tematic way – the quality of software is compromised if a rig-
orous engineering approach to re-use is not followed. Clearly,
any piece of assessed work incorporating the development of
software (including final year projects) can be considered to
be of“poor”quality if it has relied upon non-rigorous, ad-hoc
re-use of other peoples’ software.

1.3 Requirements for a Code of Practice
We propose that a code of practice for software re-use of-

fers many advantages to students submitting work for eval-
uation: makes explicit what constitutes plagiarism with re-
spect to software; provides guidelines which, if followed,
should ensure that a student is not wrongly accused of pla-
giarism; defines structures to help examiners to objectively
check for plagiarism in a consistent and fair manner; and
improves the quality of the software that students produce.

We acknowledge that any code of practice will obviously
restrict the way in which software can be developed. Fur-
thermore, such a code will almost certainly be too restrictive
in the sense that there are sure to be specific requirements
for some system that would be impossible to meet in the
time-frame of a project if the code of practice is enforced,
but otherwise could possibly be met. For this reason we pro-
pose that exceptional cases be dealt with by the lecturer or
project supervisor. The fundamental requirements for the
code of practice are that it is: simple to understand, apply
and enforce; consistent with wider plagairism policy; and as
fair as possible to all students.

In order to guide the formulation of the code of practice,
we propose that concrete examples of acceptable and unac-
ceptable forms of re-use be examined. These examples are
not intended to be complete. The examples were chosen be-
cause they represent the most common forms of re-use that
we have witnessed in final year projects (both acceptable
and unacceptable).

2. UNACCEPTABLE SOFTWARE RE-USE
— WHY WE NEED A POLICY

In this section we explicitly identify — through a single,
simple piece of Java — a number of unacceptable ways of
re-using other peoples’ software. Further, we recommend
that you follow our guidelines for acceptable forms of re-
use, even when re-using your own code. This is known as
self-plagiarism [3] and may also be considered bad practice
by lecturers setting software development assignements.

2.1 Original Software — a Realistic Example
In this subsection we introduce a software artifact/model,

in the form of Java source code, which forms the basis of
discussion about unacceptable forms of re-use. Note that,
like much of the code that is re-used by students, this artifact
was not designed for re-use!

Let us now examine what this code does and how it may be
reusable. Firstly, we note that the code consists of 2 classes:
Example1 and IntArray. The Example1 class appears to
be a simple test driver for the IntArray class. By running
the code, and through examination of the sample execution
which is provided as a comment at the end of the file listing,
we see that the code appears1 to generate an array of 12
integers whose values are initialised randomly to be in the
range 1 to 8. It then prints out this array, sorts it and
prints out the array again. It also counts the number of
comparisons and swaps that were performed in the process
of sorting the array.

class IntArray {

int size, max;
int numswaps, numcomparisons;
int [] values;

IntArray (int size, int maxvalue){
reset(size, maxvalue);}
// end IntArray constructor

public void reset(int sizeIn, int maxIn){
size = sizeIn; max = maxIn;
values = new int [size]; randomize();
}// end reset

public void randomize(){
for (int i =0; i<size; i++)
values[i] =(int)(Math.random()*max)+1;

numswaps=0; numcomparisons=0;
}// end randomize

public boolean compare(int i, int j){
if (i<size && i>=0 && j<size && j>=0){

numcomparisons++;
return values[i]> values[j];

}else return false;
}// end compare

public void swap(int i, int j){
if (i<size && i>=0 && j<size && j>=0){

numswaps++;
int temp = values[i];
values[i] = values[j];
values[j] = temp;}

}// end swap

public void sort(){
for (int i =0; i<size; i++)

for (int j = i+1; j<size; j++)
if (compare(i,j)) swap(i,j);

}// end sort

public String toString(){
String str =" size: "+size+

" max: "+max+" values: ";
for (int i=0; i<size;i++) str = str+" "+values[i];
str = str+"\n number of swaps = "+numswaps+

" number of comparisons = "+numcomparisons;
return str;
}// end toString
}// endclass IntArray

class Example1 {

1We write appears because we cannot be sure that this is its
behaviour without performing some adequate tests

56

public static void main(String[] args){
IntArray test = new IntArray(12,8);
System.out.println("Randomly generated integer array");
System.out.println(test);
test.sort();
System.out.println("Array after it is sorted");
System.out.println(test);
}// end main
}// endclass Example1

Using this example, we illustrate unacceptable types of
software re-use that are typically seen in the projects sub-
mitted by students. All of these involve use of cut-and-paste
functionality provided by most text editors and operating
systems.

2.2 Cut-and-Paste Plagiarism
Imagine that a student’s project requires them to provide

code to sort integers in descending order; and imagine also
that this is a non-trivial task for a computer science or soft-
ware engineering student. Such a student may “find” the
IntArray code, above, through searching the web, for ex-
ample. It appears to sort integers, but it sorts them into
ascending order. The student could clearly make a minor
change to achieve the required behaviour. We propose the
following code (fragment) as that which would be typically
produced and submitted by such a student:

class MyArray {
int size;int max;int [] values;
MyArray (int size, int maxvalue){
reset(size, maxvalue);}

public void reset(int sizeIn, int maxIn){
size = sizeIn;
max = maxIn; values = new int [size];randomize();}

public void randomize(){
for (int i =0; i<size; i++)
values[i] =(int)(Math.random()*max)+1;}

public boolean compare(int i, int j){
if (i<size && i>=0 && j<size && j>=0)
{return values[i]< values[j];}else return false;}

public void swap(int i, int j){
if (i<size && i>=0 && j<size && j>=0)
{int temp = values[i];
values[i] = values[j];values[j] = temp;}
}

public void sort(){
for (int i =0; i<size; i++)
for (int j = i+1; j<size; j++)
if (compare(i,j)) swap(i,j);}

public static void main(String[] args){
MyArray test = new MyArray(10,20);
System.out.println("Randomly generated array");
System.out.println("Values: ");
for (int i=0; i<test.size;i++)
System.out.print(" "+test.values[i]);

test.sort();
System.out.println("\nArray sorted (descending order)");
System.out.println("Values: ");
for (int i=0; i<test.size;i++)
System.out.print(" "+test.values[i]);

}}

Note that, to anyone familiar with programming, this sub-
mitted code is plagiarised The student has made a number of

minor changes: (1) The layout and indentation has changed.
(2) Comments have been changed. (3) Identifiers have been
changed; although not all of them. (4) Code has been re-
moved (in this case, the student saw no need for counting
swaps and comparisons, or for a toString method). (5) In
the compare method, a ‘>’ is changed to a ‘<’ (to sort in de-
scending rather than ascending order). (6) Design structure
has been altered — rather than having a separate testing
class, the test is included as a main method of the ‘new’
MyArray class.

Typically, plagiarised code will be altered in at least one of
the ways illustrated in the example above. Even though the
“new code” is different from the original, plagiarised code,
the work done in making the changes could be considered to
be insignificant. A poor student (or a student who deliber-
ately wishes to mislead an examiner into believing that they
wrote MyArray from scratch) would “forget” to acknowledge
the original author of Example1; and would probably make
as many insignificant changes as possible. A good student
may indeed acknowledge the original Example1 software ar-
tifact that was re-used. However, the degree of acknowl-
edgement could vary from a vague and imprecise: This code
was inspired by the work of A. Programmer; to a complete
acknowledgement, including a listing and reference to the
original code, together with a difference file showing exactly
the changes that were made. Such a potentially wide vari-
ety of acknowledgements makes it impossible to fairly credit
such software submitted in this way.

The problem we face is that this cut-and-paste type of
software re-use is the most common form of re-use that is
found in submitted work!

3. DIFFERENT FORMS OF PLAGIARISM
All plagiarism involves claiming other peoples’ work as

your own (or assisting someone to make such false claims).
In software engineering, work that is re-used without proper
acknowledgement can be hard to identify. To clarify this,
we illustrate other forms of software plagiarism, where the
re-use is less obvious than that shown in the previous Java
example, but which is nevertheless considered to be unac-
ceptable.

3.1 Collusion
In all practical projects, it is considered normal practice to

be given help. This help must be publically acknowledged
when the work is presented for evaluation or publication.
When the help is significant then it is normal for the person
who has given the help to be credited in a more formal way.
Where help has been given, and there is collusion between
the parties involved, it is a simple matter for no public ac-
knowledgement of this to be made. In such a case, there is
no direct re-use of software in the classical engineering sense.
However, this collusion is plagiarism.

Software — of any reasonable complexity — is structured
and has different components. Collusion in software devel-
opment involves a third party writing the code for at least
one of these components, and a student submitting this code
as their own.

3.2 Unacknowledged Reverse Engineering
Often software engineers will look at some code and be

able to reverse engineer [5] some abstract property of that
code in order to re-use that abstraction to help them write

57

their own code, usually as a solution to a different, yet sim-
ilar, problem. When the original piece of code is not ac-
knowledged then this is also commonly known as “stealing
someone else’s idea(s)”. In final year projects, this type of
plagiarism often results when a student re-uses the design
of a software system (or part of a software system) as a
structure, template or pattern for their own code.

Students should not be discouraged from engineering soft-
ware in this way (it is a reasonably advanced technique) but
they should be strongly encouraged to correctly acknowledge
where the original design (idea) originated. Software design
is a challenging part of the software engineering life cycle;
and good design [8] should be recognised in the assessment
of any project. Re-using other engineers’ designs without
proper acknowledgement is as bad as re-using their code in
the same way.

3.3 Unacknowledged Translation
Imagine that a student is required to write code that pro-

vides exactly the same behaviour as seen in Example1, but
is required to code it in C++. The student “finds” the Java
code and re-uses it to generate2 C++ code. This can be
thought of as a specific form of re-use through abstraction.

Again, this may be considered a good approach in some
circumstances, provided the original code is properly ac-
knowledged. A student who choses not to acknowledge the
original code will be considered to have attempted to de-
liberately deceive the examiners of their work, and this will
result in them being brought to the disciplinary committee.

3.4 Unacknowledged Code Generation
Software engineering tools, often found as part of complex

development environments, can be used to automatically
generate code. Any such generated code must be explic-
itly identified and correctly acknowledged. Note that these
tools usually credit themselves, so removing these credits
would be considered as deliberate deception on the part of
the student, and disciplinary action would follow.

A common form of plagiarism is to use a tool to reverse
engineer design documentation from implementation code
(from Java to UML, for example). The code generation can
also go in the other direction (from abstract to concrete).
For example, there are tools to generate C++ code from
data flow diagrams. This type of automated software en-
gineering is good, provided the role of the tool is properly
acknowledged.

3.5 No Re-use Without Test
From the examples above, it seems that care needs to be

taken about acknowledging any re-use of code. There is a
simple guideline to ensure that a student never forgets the
acknowledgement, avoiding the risk of being accused of de-
liberate deception when the plagiarism is a result of incom-
petency: Explicitly acknowledge the use of someone else’s
code — no matter how small — by testing it against your
requirements. In the case that a student does not properly
test the software that they are re-using, this student should
be advised that the re-use is unacceptable. The following
guideline3 is suggested: (1) If you don’t know how to test

2This generation may, or may not, be assisted by tools —
see the next subsection.
3We use ‘test’ to mean some sort of validation or verification,
and ‘it’ to represent any software artifact.

it then don’t re-use it. (2) If you don’t know what to test
it against then don’t re-use it. (3) If you know what to test
and how to test it, then re-use it only after the tests are
successfully completed.

Supervisors should advise students that it is the students
who are responsible for the behaviour of the artifacts that
they re-use: if their system fails due to a defect in another
person’s software then this is the student’s responsibility.

4. ACCEPTABLE SOFTWARE RE-USE
In this section we identify useful strategies for re-use that

would leave an examiner in no doubt about what has been
re-used and what has been the original contribution of the
student. It is important that concrete examples of each ac-
ceptable form of re-use are presented to the students [7]:
Composition and Aggregation, Inheritance, Templates and
Genericity, Design Patterns and Architecture, Interface De-
sign and Specification of requirements (including tests). We
note that the examples of acceptable code re-use must also
illustrate the best techniques and tools for testing the code
(models) that are being re-used.

5. FILE-LEVEL RE-USE
Unacceptable forms of software re-use are most easily iden-

tified by files that contain cut-and-paste code: i.e, code that
has been produced by more than a single author. We cannot
preclude the re-use of multi-authored software; however, we
can preclude the submission of the student’s own work in a
multi-authored file. All the examples of acceptable forms of
re-use are directly supported — at the file level — by the
vast majority of modelling languages that are used in soft-
ware engineering. In other words, they do not require one
to write cut-and-paste code. We suggest the following code
of practice:
(i): All software that is re-used will not be found in the
same file as software that is submitted by the student for
evaluation, unless authorised by the supervisor and justified
in the documentation.
(ii): All re-used software will be properly acknowledged in
the documentation, and the student must clearly4 distin-
guish between the software that they have re-used and the
software that they have written themselves; and they must
note in their own software where the re-use occurs.
(iii): All re-used software must be adequately tested.
(iv): All students who are found to have plagiarised soft-
ware — intentionally, or not — will be punished following a
standard set of public guidelines

This code of practice meets all our original requirements.

6. EVALUATING THE CODE OF PRACTICE
The author has much experience of using puzzles and

games for teaching about software engineering [13, 6]. One
problem which has proven successsful is that of the matches
game:The game begins with a random number of matches.
There are 2 players who play alternately: each time remov-
ing 1,2 or 3 matches. The winner is the player who leaves
their opponent with the final match.

6.1 Plagiarism continues
When these students have not been explicitly warned about

plagiarism through presentation of the code of practice, we
4Through intelligent use of comments, fonts, colors, etc. . .

58

find that, on average, half the students plagiarise material
from the web. For example, consider the code which is pub-
lically available on the web and which can be easily found
using a search engine:

private boolean losing(){
// is the number of matches left a losing position?
return ((numMatches-1)%(currMaxR+1) == 0);}

private int pickwell(){
// how many matches to remove to leave a losing position
return ((numMatches-1)%(currMaxR+1));}

public int pick(){
// the number of matches to remove (depending on level)
if ((numMatches-2)<currMaxR){

appendHistory("You left me with an easy win...");
return numMatches-1;};

if (losing()){// in losing position so pick randomly
appendHistory("I have a difficult choice...");
return 1+(int)(Math.random()*currMaxR);};

int temp = (int)(Math.random()*4);
boolean pickgood = (currLvl > temp);
if (pickgood){// leave other player a losing position

appendHistory("I feel I can make a good choice...");
return pickwell();
};

appendHistory("I am not sure what to do...");
// make a random pick
return 1+(int)(Math.random()*currMaxR);
}// end method pick in Matches

Students that are asked to program a perfect player for
the 3 matches game have often plagiarised the original code
to arrive at code such as:

private boolean losing(){
// is the number of matches left a losing position?
return ((numMatches-1)%(3+1) == 0);}

private int pickwell(){
// how many matches to remove to leave losing position
return ((numMatches-1)%(3+1));}

public int pick(){// the number of matches to remove
if ((numMatches-2)<3){return numMatches-1;};
if (losing()){// in losing position so pick randomly

return 1+(int)(Math.random()*currMaxR);
return pickwell();
}}// end method pick in Matches

Typically, students that find the original code then replace
all instances of currMaxR with the constant 3, remove the
code for different levels and edit out the code for writing
messages to the screen.

6.2 Re-use when code of practice is presented
After students are presented with the code of practice, a

significant number continue to submit plagiarised material.
Although, the percentage falls by half compared to the case
when the code of practice is not presented. An interesting
observation is that the strong students tend to re-use code
that it is found on the web but they successfully manage
to do so by following our policy. Furthermore, many of the
students that re-used code in this way identified, through
testing, errors in source code that they found in the web.
This was a valuable lesson for them to have learned.

7. CONCLUSIONS AND FUTURE WORK
Evidence for the success of adopting a code of practice is

currently anecdotal. Other lecturers have reported that stu-
dents, who have been presented with the code of practice, are

much more rigorous about re-using code in a range or mod-
ules and projects. In future research, we hope to validate
our intuition through a more rigorous, scientific experiment.

8. REFERENCES
[1] R. F. Boisvert and M. J. Irwin. Plagiarism on the rise.

Commun. ACM, 49(6):23–24, 2006.

[2] X. Chen, B. Francia, M. Li, B. McKinnon, and
A. Seker. Shared information and program plagiarism
detection. Information Theory, IEEE Transactions on,
50(7):1545–1551, July 2004.

[3] C. Collberg and S. Kobourov. Self-plagiarism in
computer science. Commun. ACM, 48(4):88–94, 2005.

[4] G. Cosma and M. Joy. Towards a definition of
source-code plagiarism. Education, IEEE Transactions
on, 51(2):195–200, May 2008.

[5] G. C. Gannod and B. H. Cheng. A framework for
classifying and comparing software reverse engineering
and design recovery techniques. In Proceedings of the
6th Working Conference on Reverse Engineering.
ACM International Conference Proceeding Series
archive, Oct. 1999.

[6] J. P. Gibson. A noughts and crosses Java applet to
teach programming to primary school children. In
J. F. Power and J. Waldron, editors, Proceedings of
the 2nd International Symposium on Principles and
Practice of Programming in Java, volume 42 of ACM
International Conference Proceeding Series, pages
85–88. ACM, 2003.

[7] J. P. Gibson. Software reuse in final year projects: A
code of practice. Report NUIM-CS-TR-2003-12,
Department of Computer Science, NUI Maynooth,
2003.

[8] J. P. Gibson, E. Lallet, and J.-L. Raffy. How do I
know if my design is correct? In Formal Methods in
Computer Science Education (FORMED 2008), pages
61–70, 2008. To appear in ENTCS.

[9] G. Harvey. Writing with sources: A guide for students.
Hackett Publishing Company, 1998.

[10] C. Jordan. At a crossroads: plagiarism. Crossroads,
13(1):2–2, 2006.

[11] C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag:
detection of software plagiarism by program
dependence graph analysis. In KDD ’06: Proceedings
of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 872–881,
New York, NY, USA, 2006. ACM.

[12] R. Macdonald and J. Carroll. Plagiarism — a complex
issue requiring a holistic institutional approach.
Assessment & Evaluation in Higher Education,
31(2):233–245, 2006.

[13] J. O’Kelly and J. P. Gibson. Software engineering as a
model of understanding for learning and problem
solving. In ICER ’05: Proceedings of the 2005
international workshop on Computing education
research, pages 87–97, New York, NY, USA, 2005.
ACM.

[14] A. Parker and J. Hamblen. Computer algorithms for
plagiarism detection. IEEE Transactions on
Education, 32(2):94–99, May 1989.

59

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

