
FORMED 2008

Formal Methods:
Never Too Young to Start

J Paul Gibson
1

Le département Logiciels-Réseaux (LOR),

Institut National des Télécommunications,

Evry, France

Abstract

In many countries around the world, there is a crisis in the teaching of mathe-
matics and computer science. Governments have tried to address the problem by
investing in computers in schools; when they should have invested in teaching com-
puter science in schools. Formal methods bridge the boundary between computing
and mathematics in a natural way. Through our experience of teaching algorith-
mic thinking in schools, young children have been observed using concepts such as
re�nement, proof, abstraction, complexity, non-determinism, equivalence, etc. . . in
their own reasoning about problems. We argue that this ability needs to be better
leveraged in order to improve both the teaching of mathematics but also to improve
childrens' understanding of computer science as a discipline in its own right. We
give concrete examples of the type of formal methods teaching that succeeds.

Key words: Schools, Computer Science, Proof, Algorithms

1 Introduction: Why teach formal methods in schools?

The current state of mathematics teaching around the world is causing prob-
lems for the teaching of computer science. Children are taught �mathematics�
at all levels of school education, yet computer science lecturers continue to
struggle with undergraduate students whose mathematical abilities are poor.
Furthermore, many of these students have been (mis)led in their schools to
believe that computer science does not require mathematics. The recent intro-
duction of computers into schools has not, in general, improved the situation:
computers are mostly used as a tool to support the teaching of other subjects
(including mathematics); whilst often giving a false impression that computer
science is using a computer. Some schools, in an attempt to teach computer
science, have introduced children to programming. We believe that this is a

1
Email: paul.gibson@int-evry.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Gibson

step forward, but it carries the risk that children think that programming is
computer science, and that computer science is programming. We believe that
the best way of introducing children to computer science does not require a
computer: it requires the teaching of rigorous (formal) reasoning about com-
putations and algorithms.

This paper reports on the teaching of formal methods to children as young
as seven years old. It supports the well-established view that there are advan-
tages in teaching mathematics constructively. For example Clements stated in
1990[4]: �Educational research o�ers compelling evidence that students learn
mathematics well only when they construct their own mathematical under-
standing.� The work reported is motivated by our own experiences in teach-
ing computer science to young children: Java programming[8], the Computer
Science Unplugged Tutorials[1], and problem based learning (PBL)[13,12]. It
builds on research that suggests that formal software engineering concepts
form the basis for how children learn to solve problems[9].

In �How to Solve It: A New Aspect of Mathematical Method�, Polya[15]
states: �A good teacher should understand and impress on his students the
view that no problem whatever is completely exhausted.� Our approach has
been to take problems that one would normally see in university and to rework
them for school children. The children are then encouraged to take the prob-
lems in whatever direction they wish, and as far as they want. In this way,
young children quickly identify fundamental concepts in computer science.

This paper reports on some of the case studies with which we have had
most success. We do not claim to have carried out a veri�able educational
experiment: we report on observations that have been made over a number of
years through interaction with hundreds of children (aged 7 to 18).

2 Learning Theory and Models

There are hundreds of well-published complementary, and competing, theories
of learning. The highly cited review by Hilgard and Bower[11], published
over half a century ago, is a good introduction to the foundations of learning
theory. In this paper, we focus on the well-accepted theories that have had
most in�uence on our own research into formal reasoning and problem solving.

Cognitive structure is the concept central to Piaget's theory. (See the work
by Brainerd[2] for a good overview and analysis.) Piaget's most interesting
experiments, with respect to the work presented in this paper, focused on
the development of mathematical and logical concepts. His theory has guided
teaching practice and curriculum design in primary (elementary) schools in
the last few decades. However, his work predates the development of com-
puter science as a discipline and it is therefore unsurprising that it does not
make reference to any formal methods concepts. Piaget's theory is similar to
other constructivist perspectives of learning (e.g., Bruner [3]), which model
learning as an active process in which learners construct new concepts upon

2

Gibson

their current knowledge and previous experience.

Similarites can be seen between the constructivist view and the theories of
intelligence such as proposed by Guildford's structure of intellect (SI) theory
[10] and Gardner's multiple intelligences[7]. Typically, these theories structure
the learning space in terms of skills, for example: reasoning and problem-
solving, memory operations, decision-making, and language. These skills do
not explicitly mention computation and proof, but one can see that there are
strong overlaps.

Piaget's ideas also in�uenced the work by Seymour Papert in the speci�c
domain of computers and education[14]. Papert argues that children can un-
derstand concepts best when they are able to explain them algorithmicaly
through writing computer programs. We believe that they learn better when
working at higher levels of abstraction, and that what they should really be
doing is mathematical modelling.

Alan Schoenfeld argues that understanding and teaching mathematics
should be treated as problem-solving [16]. He identi�es four skills that are
needed to be successful in mathematics: proposition and procedural knowl-
edge, strategies and techniques for problem resolution, decisions about when
and what knowledge and strategies to use, and a logical world view that moti-
vates an individual's approach to solving a particular problem. In this respect,
Schoenfeld has quite nicely identi�ed fundamental aspects of formal methods
in computer science and software engineering.

3 Learning Objectives: review of our sessions

In each of the sessions that we run in the schools, we are mindful that our
goal is that the children learn fundamental concepts. Following the PBL
philosophy, we do not explicitly teach the children about these concepts; we
help the children to discover them through interaction with a speci�c problem.
Each problem has the goal of the students discovering at least one of the
following:

• Proof� the evidence or argument that compels one to accept an assertion
as true.

• Theorem � a proposition that is true in all cases.
• Conjecture � an unproven proposition for which there is some sort of
empirical evidence.

• Constructive proof � demonstrates the existence of a mathematical ob-
ject with certain properties by giving a method (algorithm) for creating
such an object.

• Algorithm � any procedure involving a series of steps that is used to �nd
the solution to a speci�c problem.

• A deterministic algorithm: behaves predictably. Given a particular input,
it will always produce the same output, and the underlying machine will
always pass through the same sequence of states.

3

Gibson

• Correctness � an algorithm can be proven to be correct with respect to
a speci�cation.

• Re�nement � the veri�able transformation of an abstract (high-level)
formal speci�cation into a concrete (low-level) executable program. It
guarantees the correctness of the program by construction.

• Invariant � an expression whose value does not change during algorithm
execution; which can implement a required safety property in the speci-
�cation

• Computational Complexity � the scaleability of algorithms with respect
to the use of resources (typically time and space).

It is beyond the scope of this paper to analyse all of these learning objectives,
and to demonstrate how our sessions help children to reach them. Rather,
we give � in the next 3 sections � examples of sessions that we run with
the youngest children (aged seven to nine). These illustrate how the formal
methods concepts arise quite naturally out of the games that we play.

4 Parity: Algorithms, Veri�cation and Proof

For this problem children need to be familiar with the concepts of even and
odd numbers. They do not need to be able to add (although they think they
do). We present the children with sums and ask if the answers are odd or even
numbers. For example: Is the answer to the sum 1 + 2 + 2 + 1 + 2 + 1 +
1 +1 + 1 + 2 +1 even or odd? The children typically follow the algorithm:

add up the numbers

decide if the sum is odd or even (by looking at the last digit)

They then arrive at (hopefully) the answer 15 and then they say that 15 is
odd (because 5 is odd). We then ask the children for more complicated sums
and claim that we can perform the task faster than they can (even if they use
a calculator): 1285 + 45362 + 12987 + 367235 + 12 + 887877 + Of
course, we have a trick, which we ask the students to try and work out.

We then bring in some (younger) students from a class that we have taught
how to recognise odd and even numbers (represented as a string of digits).
We give them a torch (�ashlight). They then perform the following algorithm
(after practising with us until we know they execute it correctly):

In the beginning the light (which can be switched) is off

For each number to be added:

If light is off and the number odd then switch

else if light is on and the number even then switch

else do not switch

When no more numbers left

If light is off then answer is even else the answer is odd.

The older children are amazed that the younger children � who cannot count
(very well) � are quicker than them at doing the sum. Of course, they
never really do the sum . . . this is the trick that we want the older children to
discover. We then ask the younger children to explain the algorithm to the
older children. The younger children, in general, know the algorithm but do

4

Gibson

not understand what it is doing. The older children do not know the algorithm
but know what it is supposed to do. Typically, they question the correctness
of the algorithm by asking if the trick will always work:

�They did it once (for a very di�cult example) so it must work�, or
�Ask them to do it a few more times to make sure they are not just
guessing�, or
�I will not ever be convinced until I know exactly what they are doing�

In order to convince the sceptical students we ask them to consider the fol-
lowing table:

Odd + Odd = Even Even + Even = Even

Odd + Even = Odd Even + Odd = Odd
The students are then asked to construct a table for the addition of three
numbers, and to see if they can use the two tables to �nd out something
that may help us how to understand whether the algorithm works (is correct).
Typically, they identify the associativity and commutativity of addition (over
odds and evens). At this point we introduce some physical elements (toys)
in order to help them play with the problem. In this case, we used di�erent
coloured bricks that can stick together. We demonstrate the addition of the
numbers 1 and 2, as shown in �gure 1.

Fig. 1. Addition using Sticky Coloured Bricks

We ask the students to demonstrate/prove the elements of the addition
table, for example: Odd + Odd = Even. In general, we see the sort of �proof�
as illustrated in �gure 2. Whether the physical manipulation of the sticky
bricks constitutes a proof is open to question. What should not be questioned
is that children are able to demonstrate why the parity addition trick works.

5 Primes: Algorithms, Correctness and Complexity

The goal of this exercise is to test whether the students can reason about the
computational complexity of an algorithm. Furthermore, we would like them
to see that checking the answer of a computation is often simpler than �nding
the correct answer. We use the classic problem of testing whether an integer
is prime. The children do not need to know how to multiply or divide but
they do need to know about rectangles. We use sweets (wrapped in paper)

5

Gibson

Fig. 2. Parity �Proof�

for the concrete representation of numbers (in unary notation). In �gure 3,
we see how the children check whether the numbers 7 and 6 are prime.

Fig. 3. Primes Algorithm: Can we make a rectangle?

As a game, we provide a larger number of sweets and ask the children
to race against each other (often in teams) in order to construct a rectangle.
The winning team gets to eat their sweets. As a challenge, we give them 17
sweets and see that they get quite frustrated. We explain that when they
cannot make a rectangle then the number of sweets is said to be prime. When
playing the game, some of the children do not trust us when we say that
another team has found the rectangle before they have. Consequently, we tell
them the width and height (multiples) and they see immediately that they
are quicker at checking that the answer is correct than at trying to �nd the
answer themselves. After playing this game, the older children identify classic
algorithms for primality and even manage to execute them in parallel using
di�erent players in their teams to check di�erent multiples. In order to win
the sweets, the children try to speed up their algorithms. In general, they are
too young to recognise that they do not need to check all rectangles (and that
they can stop at the �square in the middle�).

During this game there are a number of surprising things that can occur.
The most interesting remark that we had was from an 8-year old who � on

6

Gibson

seeing that the number was prime � asked if he could have another sweet.

6 Searching and Sorting: Re�nement

6.1 Searching and data re�nement

In searching, we initially require only that a child can match a single piece of
string with another piece of string in a collection. We demonstrate that we
can hide a piece of string in a box, and place a number of pieces of string in a
number of boxes (one per box). Finally, we hand them a piece of string and
ask them to �nd the matching string in one of the boxes. However, they are
told that they can open only one box at a time. Again, we play the children
against each other, making alternate moves of a game. In this game, a move
is looking in a box for the matching string. The �rst player to match the
string wins the game. All other children act as spectators of each game; and
observing the spectators is as insightful as observing the players.

We �rst observe the children selecting boxes in a random manner. The
�rst interesting observation is when children realise that they have a better
chance of winning if they never look in a box that they have already looked
in. This observation usually arises from one of the child spectators shouting
out that a player has already looked in a particular box and that they should
choose another. In terms of software engineering, the children have quite
naturally identi�ed and communicated a process re�nement At this point, we
ask children to play against each other using the new, improved approach.
However, we preclude the spectators from speaking during a game. Very
quickly, it is observed that some of the children have problems remembering
in which boxes they have already looked.

In the searching example, we have observed 3 types of data re�nement
which the children adopted as a speci�c way of overcoming the problem of
having to remember which boxes had already been examined:

• Children searched the boxes in an ordered fashion (left to right, e.g.) and
so had to remember only the last box searched.

• Children marked the boxes already searched (using a pencil, e.g.).
• Children moved the boxes examined into an already examined pile.

In the next phase, before we ask the children to play the game, we order the
boxes based on the length of the strings within. Very quickly it is observed that
not all the children realise that the strings in the boxes are ordered by length.
The children who realise this are then observed playing in a more structured
manner. Over a period of time, we observe that the children e�ectively re�ne
their solution to a binary search where they do not always optimise the search
by cutting the search space perfectly in two every time they make a guess.
They know they need to look to the left or right of the current string box,
based on the relative sizes of the search string and the string in the box.

The children are asked if it is possible to play better? Often they make

7

Gibson

quite solid arguments as to why their solution is optimal. At this stage, we
play against them and we always �nd the string that is being looked for in
the �rst guess. Without them knowing, we employ a perfect hashing function
to map the string length directly to a particular box. They often accuse us of
cheating; and only the more advanced students realise the trick.

6.2 Example: Sorting and process re�nement

We propose the following algorithm for sorting a list of elements:

(i) Take the input list I and copy into list O.

(ii) If O is ordered then return this as output,
else swap two randomly chosen elements of O.

(iii) Goto step (ii)

We can specify this algorithm as a non-deterministic �nite state automaton
(NFSA). In the left hand side of �gure 4, we illustrate sorting a list of three
elements. The states are labelled with the list of integer elements. The tran-
sitions (all non-deterministic) are labelled by arcs and correspond to random
swaps. Note: we have not represented the null transitions (where an element
is swapped by itself) in the NFSA. The terminating state � where the list
elements are ordered � is shaded.

Fig. 4. Left: Random sorting of a 3-element list. Right: a sorting process re�nement

We can see that from any starting state it is always possible that the
terminating state will be reached, but that we may move in circles in an
ine�cient manner. Re�nements that remove some of the non-determinism
of the system (solution) can be used to generate a more e�cient solution.
Consider the �rst re�nement, in the right of �gure 4, where we have removed
all swap transitions that exchange elements that are already in order. The
removal of non-determinism, in this case, has transformed a correct solution
into a better, more e�cient, correct solution.

In order to see if the children can reason about re�nement and correctness,
we present the sorting problem using coloured balls (to be ordered as seen in
the rainbow) hidden in shoe boxes. This is illustrated in �gure 5. Through
playing games, children naturally re�ne the ine�cient solution and discover
classic sorting algorithms in the process.

8

Gibson

Fig. 5. Sorting with coloured balls

7 Some Interesting Observations

This paper is not reporting on a formal pedagogic experiment. We have made
detailed notes concerning our sessions with the children and o�er two interest-
ing observations. With respect to algorithms, we were interested to note that,
in general, a subset of students lose interest in a game as soon as the trick is
explained by an algorithm. In early years (children as young as 7-years old)
the percentage of children concerned is usually between 25 and 30. However,
in later years (children in their late teens) this percentage usually grows to
more than half the class. With respect to correctness, the yonger children are
less interested in verifying their algorithms than the older children. In order to
promote veri�cation, we present the children with algorithms that are almost
correct (but don't always work). Younger children appear to be disappointed
in the fact that the algorithms can be broken; whilst the older (interested)
children see that as being the real challenge.

8 Conclusions

We have demonstrated that it is possible to teach young children formal meth-
ods concepts through games and problem based learning. Children who are
disinterested in mathematics regain an interest when they see that mathemat-
ical modelling can help them reason about algorithms and games. We do not
make any claims about whether our sessions improve the childrens' mathe-
matical ability. However, we do believe that this type of session is a good
way of introducing computer science in schools. (We have also demonstrated
that this problem-based learning approach can be used to teach university
students[12] about computer science.)

As formal methods are foundational to computer science, it should not
be any surprise that the rigorous, mathematical, analysis of algorithms and
computations should be a major part of teaching computer science to children.
This is not a new idea � it was discussed at the TFM workshop in Ghent
in 2004[6], where daRosa presented research into the teaching of recursive
algorithms as part of a high school mathematics course[5]. We already know
that computer science education has need of mathematics; perhaps now the
mathematics teachers can be persuaded to consider computer science (formal

9

Gibson

methods) as a good way of teaching mathematics.

References

[1] Bell, T., A low-cost high-impact computer science show for family audiences,
23rd Australasian Computer Science Conference 00 (2000), pp. 10�16.

[2] Brainerd., C., �Piaget's Theory of Intelligence,� Prentice Hall, Englewood Cli�s,
NJ, 1978.

[3] Bruner, J. S., �Toward a theory of instruction,� Belknap Press of Harvard
University, Cambridge, Mass� 1966.

[4] Clements, D. H. and M. T. Battista, Constructivist learning and teaching,
Arithmetic Teacher 38 (1982), pp. 34�35.

[5] da Rosa, S., Designing algorithms in high school mathematics, in: Dean and
Boute [6], pp. 17�31.

[6] Dean, C. N. and R. T. Boute, editors, �Teaching Formal Methods,
CoLogNET/FME Symposium, TFM 2004, Ghent, Belgium, November 18-19,
2004, Proceedings,� Lecture Notes in Computer Science 3294, Springer, 2004.

[7] Gardner, H., �Frames of mind: the theory of multiple intelligence,� Basic Books,
New York, 1983.

[8] Gibson, J. P., A noughts and crosses java applet to teach programming to primary

school children, in: PPPJ '03: Proceedings of the 2nd international conference

on Principles and practice of programming in Java (2003), pp. 85�88.

[9] Gibson, J. P. and J. O'Kelly, Software engineering as a model of understanding

for learning and problem solving, in: ICER '05: Proceedings of the 2005

international workshop on Computing education research (2005), pp. 87�97.

[10] Guilford., J. P., �The Nature of Human Intelligence,� McGraw-Hill, New York,
1967.

[11] Hilgard, E. R. and G. H. Bower, �Theories of Learning,� Prentice Hall,
Englewood Cli�s, NJ, 1956.

[12] O'Kelly, J. and J. P. Gibson, PBL: Year one analysis � interpretation and

validation, in: PBL In Context � Bridging Work and Education, 2005.

[13] O'Kelly, J. and J. P. Gibson, Robocode and problem-based learning: a non-

prescriptive approach to teaching programming, in: R. Davoli, M. Goldweber
and P. Salomoni, editors, ITiCSE (2006), pp. 217�221.

[14] Papert, S. and J. Sculley, �Mindstorms: children,computers, and powerful ideas,�
Basic Books, New York, 1980.

[15] Polya, G., �How to Solve It,� Princeton University Press, 1971.

[16] Schoenfeld., A. H., �Mathematical Problem Solving,� Academic Press, Orlando,
Fla, 1985.

10

	Introduction: Why teach formal methods in schools?
	Learning Theory and Models
	Learning Objectives: review of our sessions
	Parity: Algorithms, Verification and Proof
	Primes: Algorithms, Correctness and Complexity
	Searching and Sorting: Refinement
	Searching and data refinement
	Example: Sorting and process refinement

	Some Interesting Observations
	Conclusions
	References

