
A noughts and crosses Java applet
to teach programming

to primary school children

J. Paul Gibson
Computer Science Department

National University of Ireland, Maynooth
Maynooth, Co. Kildare

Ireland

pgibson@cs.may.ie

ABSTRACT
We report on a continuing study into teaching programming
to pre-teens school-children, with some as young as seven
years old. As part of the study we aim to test childrens’ al-
gorithmic understanding through their ability to solve puz-
zles and play games; and to turn this understanding into
working code. We review a project in which children have
programmed (in Java) AI players for the game of Noughts
and Crosses. This code is then incorporated into a ‘pro-
grammable’ Java Applet for use as an educational tool in
primary (junior) schools.

1. INTRODUCTION
This paper is primarily a vehicle for supporting the fol-

lowing positions (views) central to our research into learning
and complexity: children as young as seven years old can
learn to program, Java is a good language for young chil-
dren to learn to program, puzzles and games combine fun
and education in an attractive problem domain for learning
how to program, and Java applets provide an ideal tech-
nology for supporting the distribution of such programming
case studies.

2. BACKGROUND AND RELATED WORK

2.1 Theoretical Background
Piagets theories [8] continue to be central to primary school

education and its curriculum. His theory identifies a final
key period in a child’s life which concerns children older than
11. He argues that at this stage, and not before, children
become capable of full logical and mathematical deduction.

Learning how to program is difficult. A major contri-
bution to this difficulty is that programming relies on an
implicit understanding of the concept of an algorithm. It

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2003,16-18 June 2003, Kilkenny City, Ireland.
Copyright 2003 ISBN: 0-9544145-1-9 ...$5.00.

has been suggested (by followers of Piaget - in the domain
of child psychology and education) that children younger
than eleven are unable to understand algorithms. This pa-
per aims to support our argument that children as young as
seven can demonstrate algorithmic understanding through
writing programs. Although there is not enough empirical
evidence from our small case study, this paper suggests that
a larger study could lead to significant results.

We propose following Thorndike’s theory of Law of Ef-
fect[11] which argues that learning is accomplished through
satisfaction as goals are achieved. His research led to the
idea of reinforcers and punishers in the learning process.
Clearly, we have to be careful how we ‘reward’ children for
‘good’ algorithmic reasoning; and how we ‘punish’ them for
‘poor’ algorithmic reasoning. Fortunately, games provide a
natural environment in which winning and losing are appro-
priate reward and punishment.

2.2 Java as a teaching language
Java is becoming the predominant language for teaching

programming. Its success as an instructional language is di-
rectly related to its success as an object-oriented program-
ming language in the ‘real world’. There is a vast amount of
on-line information concerning Java and education, includ-
ing Sun’s own SunEd site[9]. One of the earliest independent
sites focusing on Java as a teaching language was created by
Doug Lea[5]. Common arguments given for using Java as a
teaching language are: it is a more pure object oriented than
other languages like C++, its strong typing allows the com-
piler to find many problems that in other languages would
result in run-time errors, its garbage collection means that
programmers do not have to handle the complex task of
managing memory, and in the real world Java developers
are in high demand.

None of these reasons explains why we chose Java as a
programming language for young children: Java code (em-
bedded in applets) can be executed on all PCs that support
browsing the web, installation of the JDK is simple enough
for school teachers (and most of the children), it is freely
available, we wanted to use a real programming language,
we could easily put the childrens’ code on the web so that
their family and friends could play with it from their own
homes, and the object oriented structures in Java meant it
was easy to integrate the childrens’ code with our own.

85

It should be noted that we briefly tried out the Karel the
robot approach to teaching Java[1]; but it did not match well
with our need to test the childrens’ algorithmic understand-
ing.

2.3 Java applets as teaching tools
Java applets have been successfully deployed as teaching

tools in all areas of children’s education - Kahn[3] comments
on the use of this and other technology with particular em-
phasis on the interactivity, fun and graphics. Our approach
is novel in the way that the applet allows the children to
incorporate their programs into the code; and allows them
to see how they go from their high-level design - based on
sequences of rules - to Java code.

2.4 Teaching programming skills to pre-teens
children: existing languages and environ-
ments

LOGO [6, 7] was the first programming language designed
for children. Using commands and programming language
constructs, children programmed a turtle to move around
the screen. AlgoBlock [10] and RoboLogo [4] are popular
variations often found in schools. Apart from LOGO, many
different languages and environments have been developed
to help children program. These range from environments
where children program graphical simulations to environ-
ments where they program using a video game metaphor - a
typical example is ToonTalk[2]. However, none of these en-
vironments offered the advantages of working directly with
Java; and our applet tool would address the disadvantages
normally put forward as arguments against directly expos-
ing young children to a real programming language.

3. APPLET REQUIREMENTS
Primarily, the applet arose out of the needs of the au-

thors for automated teaching support when visiting schools
to teach programming. After a number of schools had been
visited, a pattern emerged:

1 - Identify the rules for play - Firstly, the
teacher plays noughts and crosses against the
children. The teacher is encouraged to ‘cheat’ -
write over characters already played on the board,
play twice in a row, place strange characters (nei-
ther an ’X’ nor an ’O’) in the board, continue
playing after the game has been won, etc ... The
children can stop the cheating only by commu-
nicating the rules of the game which forbid such
behaviour. In general, it takes only a few min-
utes for the children to agree on an adequate set
of rules.
2 - Simulate random play following the
rules - The children are then told that they must
play the game; but they must now identify the
rules for playing well. To illustrate the notion of
playing badly, the teacher simulates a number of
random games and asks the children to call out
when one of the players makes a bad move.
3 - Add intelligence to the players by com-
municating new rules - The teacher then in-
vites the children to compete against himself.
However, the children must play randomly if they
have no applicable previously identified rule. This

stage becomes quite competitive and many rules
are identified: ‘take the middle if it is free’, ‘win
if you can win’, ‘block the opponent from win-
ning’, ‘corners are more important than sides’,
etc...
4 - Illustrate the importance of ordering
the rules - The children quickly identify the
need for multiple rules in order to play intel-
ligently. The teacher shows them that putting
them in order is vital - for example, chosing to
block a win instead of taking a win is ‘bad play’.
5 - Get each child to write their own pro-
gram - The children are then told to write their
own player ‘program’ as an ordered sequence of
rules. There is then a competition between the
children to see who has written the best program.
6 - Introduce the children to Java - At this
stage, the children are told about programming
languages and how the machine does not ‘speak
the same language’ as they have used in their pro-
grams. They must learn Java in order to build
their own players to run on the computer.
7 - Show the children some rules already
programmed by other children in Java -
This stage is crucial to the children wanting to
come back to learn how to program in Java. They
must be convinced that they can - after a few
weeks of programming lessons - ‘speak Java’ well
enough to write similar programs; and they must
be motivated to actually want to do it.

In large classes, it is impossible for all the kids to play
against the teacher in a short space of time - and thus some
children get frustrated. By encoding the teacher’s play in
an applet, all the children can play against him at the same
time! Furthermore, there are usually too many different
players - defined by the children’s rules - for the teacher to
play them all off against each other. By letting the kids
write their programs into the applet, the children can try
out as many player variations as they wish.

By keeping a library of rules previously developed by other
schools, the teacher can virtually guarantee that the children
cannot think of a rule which is not already coded in the sys-
tem. (One unpredictable child asked to play ‘in order from
top left to bottom right’, and this rule had never previously
been asked for! This resulted in the teacher frantically cod-
ing the rule in Java and recompiling the applet. Fortunately,
this is now a rare occurrence.)

The required functionality of the applet is easy to state. It
must allow children to play against a number of predefined
players. It must allow the children to define their own player
as a sequence of rules - and be able to play against such a
player. It must keep score - so that the children’s competi-
tiveness reinforces the learning of good programming. The
children need to be able to chose whether X or O starts,
and whether to play as X or O. The applet must prohibit
cheating.

The interface must be simple enough for children to use.
It must be graphical and incorporate sounds (which can be
switched off). There must be a help window.

As many schools have only older versions of Java installed,
we chose to write the code using the older AWT libraries.
The code must be structured to facilitate: easy integration
of the childrens’ own Java code for the rules, easy addition

86

of new rules on the fly, and re-use in similar applets for other
games and puzzles.

4. APPLET DESIGN
We chose to divide the applet frame into four components.

The top left was the play area for the noughts and crosses
games. For a child to make a move it is necessary only
for them to click in the play area at the appropriate posi-
tion. The top right is the control area where the children
can chose to be X or O, can chose to play first or second,
can switch sounds on/off, and can chose to play against a
player from a menu of predefined AI players (including the
player which they themselves have programmed - known as
”Rules”) The bottom right is a help window with textual
messages concerning their play. The bottom left is the pro-
gramming area where the children can program their own
AI player as a sequence of rules. This programming is done
uniquely with the mouse so that no child ever has to type at
the keyboard in order ot use the applet. This design layout
is fairly typical of educational applets and there is nothing
novel worth commenting on.

An AI player has default unintelligent behaviour, as a
random player. Children can add rules, with each new rule
added to the top of the list showing that it is currently the
most important. To move a rule up or down (to change
its importance) it must be first selected and then swapped
up or down. At any time a child can remove all rules (to
return to default random play). We first allowed rules to
be dragged-and-dropped, but many children had problems
controlling the mouse to the degree of accuracy required -
so we just provided buttons for them to select and swap.
Within a few minutes (sometimes with teacher assistance)
children managed to program the AI players without any
notable problems.

Internally, an AI player was designed to be implemented
as a linked-list of rules. Starting with the most important
rules at the head of the list, each move will correspond to
moving through the list until one of the rules applies. We
took a design decision that an empty list of rules - in the
design - should correspond to a random player, whose only
intelligence is in making sure that a move is chosen randomly
from all possible valid moves.(We decided to implement this
by always placing a ’play randomly’ rule at the end of a list
of rules. In effect, the constructor for the linked-list of rules
guaranteed that one could not construct an empty list.)

This design has been adopted for other games - although
we are making it more general by supporting conditional
branching. Adding a rule (as programmed by any child)
is simply a case of defining the child’s rule as a new class
which extends an abstract rule class (which must provide a
method for applying the rule to any given game position).

The key to our teaching programming using this tool is
that the children learn to program at two different levels of
abstraction (and using two different programming paradigms).
The applet supports reasoning and (limited) programming
using a rule-based approach. Then, as we see in the next
section, the children progress to implementing the rules di-
rectly in Java. The rules can be thought of as abstract
specifications, and the Java methods are the corresponding
concrete implementations.

5. APPLET IMPLEMENTATION

5.1 Game data structure code
After the children have been taught about Java funda-

mentals they write (assisted by the teacher) their own Java
code for representing the game. It is beyond the scope of
this paper to report on the way in which the children learn
enough Java to code up their logic rules as methods.

No two schools (or children) end up producing the same
code; but we include a copy of a code fragment produced by
children aged 9 years old. In this example, the code checks
if a player has won the game:

\\ Check if ’X’ has won
boolean rows = false;
boolean cols = false;
boolean diag = false;
for (int i = 0;i<3; i++){

if ((board[i][0] == ’X’)
&& (board[i][1] == ’X’)
&& (board[i][2] == ’X’))
rows=true;

if ((board[0][i] == ’X’)
&& (board[1][i] == ’X’)
&& (board[2][i] == ’X’))
cols=true;

}
if (((board[0][0]==’X’)

&& (board[1][1] == ’X’)
&& (board[2][2] == ’X’)) ||
((board[2][0]==’X’)
&& (board[1][1] == ’X’)
&& (board[0][2] == ’X’))

) diag = true;
if (rows || cols || diag)

System.out.println("X has won");

The code largely speaks for itself - the children have man-
aged to correctly use a good mix of Java constructs in a
manner which makes it clear that they have some algorith-
mic understanding of the game logic.

5.2 Putting the rules together
It should be noted that we do not expect the children (or

their teachers) to be able to put the rules into the applet.
This is currently done by the author. However, it is hoped
that this construction process will be automated in the near
future. The current composition mechanism, based on the
use of abstract classes, is introduced below.
XORule is an abstract class with each ‘rule’ subclass having

to implement the apply method: if the rule applies then play
continues according to the rule and returns true; otherwise
false is returned.

abstract class XORule {
public abstract boolean apply(XOGame game,char ch);

\\ ..
}

Now we show how a concrete rule - playing in the middle
- can be added to the system:

class XOMiddlePlay extends XORule{
public boolean apply(XOGame game, char ch){

if (game.charAt(1,1)!=’ ’)
return false;

if (ch==’X’)
game.playX(1,1);

else game.playO(1,1);
return true;
}

87

The code for putting the rules into sequence is a straight-
forward linked-list structure with additional methods for se-
lecting a rule in sequence and for swapping it for rules on
either side.

6. CONCLUSIONS AND FUTURE WORK
The noughts and crosses applet has shown us how Java

itself is a useful tool for teaching about Java programming
in schools. Children get to see two different types of pro-
gramming - using rules and imperatively (using classes and
objects). The applet structure is being re-used for other
games, like connect-4 and draughts.

Recently, the internal object oriented design of the applet
has been used as a case study as part of a second year un-
dergraduate course. Students have been asked to re-engineer
the code so that it better meets the original requirements.
We hope to be able to report on this in the near future.

7. ACKNOWLEDGEMENTS
The authors would like to thank all the schools that have

assisted in this case study. In particular, we mention the
good-will of the teachers and the trust they placed in us
through supporting our work - organising a group of pre-
teens children is a key, time-consuming, skill which is not
built into our Java applet (and is unlikely to be a require-
ment that can be met in the immediate future).

8. REFERENCES
[1] J. Bergin. ”karel j. robot”.

http://csis.pace.edu/ bergin/KarelJava2ed/Karel

[2] K. Kahn. Toontalk - an animated programming
environment for children. Visual Languages and
Computing, 1996.

[3] K. Kahn. Helping children to learn hard things:
Computer programming with familiar objects and
actions. Morgan Kaufmann, 1998.

[4] M. Kamvysselis, J. Lueck, and C. Rohrs. ”robologo:
Teaching children how to program interactive robots”.
http://web.mit.edu/manoli/robologo/www/robologo.htm.

[5] D. Lea. ”some questions and answers about using java
in computer science curricula”.
http://g.oswego.edu/dl/html/javaInCS.html.

[6] C. Maddux. ”the need for science versus passion in
educational computing”. Computers in Schools,
2(2-3):910, 1985.

[7] S. Papert. Mindstorms - Children, Computers, and
Powerful Ideas. Harvester Press, 1980.

[8] J. Piaget. The Jean Piaget Bibliography. Jean Piaget
Archives Foundation, 1989. ISBN:288288012X.

[9] Sun. ”sun microsystems training, distance learning
and educational online courses”.
http://suned.sun.com/.

[10] H. Suzuki and H. Kato. Algoblock: A tangible
programming language – a tool for collaborative
learning. In The 4th European Logo Conference, pages
297–303, 1993.

[11] E. Thorndike. The Measurement of Intelligence. New
York: Teachers College Press, 1927.

88

