
Formal requirements models:
simulation, validation and veri�cation

J. Paul Gibson
Department of Computer Science,

National University of Ireland, Maynooth

Date: February 2001

Technical Report: NUIM-CS-2001-TR-02

Key words: method, synthesis, analysis, object oriented, correctness

Abstract

Requirements models have three distinct roles � they are the principle media of com-
munication between clients and requirements engineers, they are the only model upon which
rigorous and automated analysis can be carried out before development begins, and they are
the structural foundation upon which design and implementation depend. A major part of
building requirements is the modelling of the system to be developed (or updated) together
with the system environment. These models are, of course, abstractions of the real world and
their operational semantics can be executed to provide a simulation model for validation: to
show that the behaviour speci�ed actually corresponds to what exists or what is required.
The models also have to be veri�ed to show their logical consistency. A formal object oriented
method facilitates incremental development, where the integration of simulation (through an-
imation), theorem proving and model checking increases con�dence in model correctness.

Formal requirements models:
simulation, validation and veri�cation

Abstract

Requirements models have three distinct roles � they are the principle media of com-
munication between clients and requirements engineers, they are the only model upon which
rigorous and automated analysis can be carried out before development begins, and they are
the structural foundation upon which design and implementation depend. A major part of
building requirements is the modelling of the system to be developed (or updated) together
with the system environment. These models are, of course, abstractions of the real world and
their operational semantics can be executed to provide a simulation model for validation: to
show that the behaviour speci�ed actually corresponds to what exists or what is required.
The models also have to be veri�ed to show their logical consistency. A formal object oriented
method facilitates incremental development, where the integration of simulation (through an-
imation), theorem proving and model checking increases con�dence in model correctness.

1 Introduction
Simulation is fundamental for the analysis of complex systems, including models of customer
requirements. Requirements modelling is concerned with synthesising and analysing the abstract
requirements of a client: the what, not the how. Requirements models are naturally decomposed
into two parts: the model of the system to be built and the model of the system environment.
Often, an implementation architecture exists such that new requirements must be built onto an
already developed system. In this case it is very important that a correct simulation (abstraction)
of the already existing system is incorporated into the requirements model. Of course, if this
system was originally developed using a formal method then a speci�cation of the system, which
has already been validated, could be re-used for this purpose; and its integration could be formally
veri�ed. New requirements need to be validated � the client has to be willing to accept that the
model actually represents their needs. The requirements also have to be veri�ed � to show the
logical consistency of the di�erent needs (both old and new) and di�erent points of view. The
process of requirements engineering continually improves our models until the best abstraction of
the client's needs is reached and design can begin to transform the what into the how.

This paper reports on a formal object oriented method for incrementally constructing, validating
and verifying requirements models. Simulation plays an important role in our method as it allows
us to perform analysis � animation, validation and veri�cation � in a constructive manner. The
remaining sections of the paper are as follows. Section 2 comments on our choice of a formal
object oriented method. Section 3 introduces our formal semantics, based on object oriented
concepts, which forms the basis of our modelling language. Section 4 details the importance of

1

non-determinism in the models, and the complementary triangle between simulation, validation
and veri�cation. Section 5 comments on the tools which we use during synthesis and analysis, and
the need for an integrated environment. Section 6 shows how our method has been successfully
applied in the domain of telephone service development. Section 7 concludes.

2 Formal object oriented requirements models
2.1 The importance of requirements engineering
Analysis is the process of maximising problem domain understanding. Only through complete
understanding can an analyst comprehend the responsiblities of a system. The modelling of these
responsiblities is a natural way of expressing system requirements. The simplest way for an analyst
to increase understanding is through interaction with the customer, where one of the most common
problems is that an interelated set of requirements must be incorporated into one coherent and
consistent framework. Interaction with the customer is an example of informal communication. It
is an important part of analysis and, although it cannot be formalised, it is possible to add rigour
to the process. A well-de�ned analysis method can help the communication process by reducing
the amount of information an analyst needs to assimilate. By stating the type of information that
is useful, it is possible to structure the communication process. E�ective analysis for building
requirements models is dependent on knowing the sort of information that is required, extracting
it from the customer, and recording it in some coherent fashion. In other words, requirements
capture and analysis is concerned with simulation of client's needs through abstraction.

2.2 Requirements Models � integrating di�erent needs
The requirements model is important as it acts as the communication medium through which the
client, analyst and developers can improve their mutual understanding of the client's requirements.
The client understands their needs from an abstract view point which hides the how of the system
to be developed. They have operational requirements which are usually expressed as sequences of
actions (or events) which they would (or would not) like to be possible when they use the system.
They also have logical requirements based on always and eventually concepts [22] � they require
some things to be true always and these must be expressed as safety properties; and they require
that some things must eventually happen and these must be expressed as liveness properties. The
designer must be able to understand the abstract needs of the client and transform these needs
into an implementation. The requirements model should act as a contract between the client
and the developer. It should also be possible to verify that an implementation is correct with
respect to the customer's requirements. This is the role of the designer. The analyst must help the

2

customer to construct and validate their requirements. Furthermore, it is the responsibility of the
analyst to verify that the operational requirements are consistent with the logical requirements.
After validation, it is the analyst who acts as the principle interface between the designers and the
requirements models.

A major problem exists in convincing each of these three di�erent groups of the utility of the
requirements models. In our method, we emphasise the need for client-oriented models � if the
client cannot understand the requirements then validation cannot be done correctly and the rest
of the development process is compromised. When in doubt, the best rule is to let the client's
understanding of their needs provide the underlying structure of the requirements model.

2.3 Why formalise?
Formal methods are a tool for achieving correct software: that is, software that can be proven
to ful�l its requirements. Formal speci�cations are unambiguous and analysable [29]. Building a
formal model improves understanding [21]. The modelling of nondeterminism, and its subsequent
removal in formal steps, allows design and implementation decisions to be made when most suitable.
Nondeterminism is also the key to validating ones simulation models.

We advocate the use of formal methods in the building of requirements models. Through formal
models, re-use can be controlled at all levels of abstraction and the client can be more con�dent
that their requirements are truly met by the implementations. There are four important aspects
to the use of formal methods for requirements capture:

� The method must be compositional so that incremental development is supported. Further-
more, the method must support high-level structuring mechanisms which correspond to the
way in which the client structures their understanding of their needs. In fact, we propose
following a formal object oriented approach [19].

� The method must o�er a means of specifying operational requirements for animation during
validation. The requirements models which we use correspond to compositional state tran-
sition systems and object oriented structuring mechanisms such as extension, specialisation,
delegation, subclassing and inheritance are provided by a formal semantics which de�ne a
correspondance between state machines and objects [21].

� The method must support multiple views on a system so that the client can control execution
of a subset of system behaviour whilst a simulator controls the other parts in a manner which
corresponds to how the system behaves, or should behave, in the real world.

� The method must o�er a means of specifying logical requirements. A purely operational
view allows only the speci�cation of safety properties � bad things can never happen. We

3

also require a means of specifying liveness properties which state that something good will
eventually happen.

Three types of formal models are used. Firstly, we have an executable model (written in LOTOS
[23] using an object-based style [15]) which is useful for compositional animation. Secondly, we
have a logical model (based on the B method) which is used to verify the state invariant properties
of our system (statically). Finally, we use TLA [26] to provide semantics for a static analysis of
liveness and fairness properties. No one model can treat each of these aspects, yet each of these
aspects of the conceptualisation are necessary in the synthesis and analysis of formal requirements
models. We are in the process of integrating the di�erent semantics into one coherent model
[14, 18, 20, 22].

2.4 Why object oriented?
We advocate an object oriented approach to structuring our requirements models. Object oriented
methods encompass a set of techniques which have been, and will continue to be, applied in the
successful production of complex software systems [7, 8, 4, 28]. The methods are based on the
simple mathematical models of abstraction, classi�cation, re�nement and polymorphism. Central
to the success of object oriented techniques is the support they o�er to re-use at all levels of
abstraction. Re-use and structure are just as important during requirements capture as during
implementation.

Structure is fundamental to all stages of system development: it provides the framework upon
which already developed parts of a system can be re-used. Structured analysis and requirements
capture methods have been successfully applied in many di�erent problem domains during the last
twenty years[9, 11, 12]. It is clear that there is a symbiotic relationship between structure and
re-use: classi�cation facilitates re-use of abstractions and relations between abstract behaviours,
composition facilitates re-use of concrete behaviour, re�nement facilitates re-use of veri�cation and
validation, con�guration facilitates re-use of composition mechanisms. The key to building good
requirements models is to model understanding as structure and to provide facility for structural
re-use.

Object orientation supports an incremental approach where requirements are continually changed,
and animated step-by-step. We support four main types of increment �

� Subclassing: An already speci�ed class can be used as the abstract superclass of a new sub-
class. The subclass must, when working in our formal object oriented framework, exhibit all
the properties of the superclass, and so this can be re-used during validation and veri�cation
of the new behaviour.

4

� Delegation: An already speci�ed class can be used as a component of a new class. The
behaviour of the old class is encapsulated behind a well-de�ned interface and, again, we can
re-use our understanding of the old class in the validation and veri�cation of the new class.

� Co-operation: Two, or more, already speci�ed classes can be con�gured in order to de�ne
the required behaviour of a new class. Our method formalises such con�guration through the
use of invariants which act as a means of glueing together the components in a way which
guarantees correctness.

� Structure re-use: As understanding of the problem domain increases due to the continually
improving requirements model, it is often the case that the client gains some insight into
their problem which allows them to re-structure their understanding. In this case, our object
oriented method provides a means of transforming the structure of the original model in a
localised manner.

3 Semantic Framework
Labelled state transition systems are often used to provide executable models during analysis,
design and implementation stages of software development [9, 11, 12]. In particular, such models
are found in the classic analysis and design methods of [4, 8, 10]. However, a major problem
with state models is that it can be di�cult to provide a good system (de)composition when the
underlying state and state transitions are not easily conceptualised. The object oriented paradigm
provides a natural solution to this problem. By equating the notion of class with the state transition
system model and allowing the state of one class to be de�ned as a composition of states of other
classes, the O-LSTS approach provides a means of specifying such models in a constructive fashion.

The O-LSTS semantics also permit us to view objects at di�erent levels of abstraction. Firstly,
using an abstract data type (ADT) we can specify the functionality of an object at a level of
abstraction suitable for requirements capture[27]. Secondly, we can transform our ADT require-
ments into a parameterised process algebra (LOTOS[3, 30]) speci�cation where we consider how
the system can interact with its environment. Finally, we consider modelling the underlying im-
plementation environment, where we can view the objects in our designs as clients and servers in
a distributed, concurrent network.

3.1 ADT for global system validaion
The simplest way to introduce the ADT view is through a standard example: A Queue of Integers
is speci�ed using the OO ACT ONE speci�cation language from [21].

5

CLASS Queue USING Integer
LITERALS empty
STRUCTURES Aqueue(Queue, Integer)
ACCESSORS is-empty:Bool
TRANSFORMERS push(Integer)
DUALS pop:Integer
EQUATIONS

empty.is-empty = True; Aqueue(Q,I).is-empty=False;
Q.push(I)=Aqueue(Q,I);
empty.pop = empty RETURNS EXCEPTION;
Aqueue(Q,I).pop=Q RETURNS I

ENDCLASS Queue
The Queue uses a prede�ned class Integer (which itself uses Bool). The literal and structure

members de�ne all the possible (states of the) objects in the class. There is one non-structured
literal value empty. All other elements are structured from two components, namely a Queue and
an Integer, using the AQueue operator. The class interface is de�ned by the three di�erent sets of
services o�ered: a transformer changes the internal state of an object, an accessor returns some
value without changing internal state, a dual returns a value and may also change the internal
state. The services may be parameterised (e.g. push) to represent the input data passed to the
server object when a service is requested. The equations are used to de�ne a semantics for the
interface services. It should be noted that every class has, by default, an implicit EXCEPTION value
which can be used in cases like the popping of an element from an empty queue. Furthermore,
variables which are not typed explicitly may have their types inferred where there is no ambiguity.
We also have tools for verifying the completeness and consistency of such speci�cations.

Consider a system made up of two Queues (as speci�ed above) whose behaviour is given by the
OO ACT ONE below. The TwoQs provides two services: push (which pushes elements onto the
�rst queue component) and pop (which pops elements from the second queue component); and the
internal state transition move transfers elements from the �rst queue onto the second queue.

CLASS TwoQs USING Queue
STRUCTURES QQ(Queue, Queue)
TRANSFORMERS push(Integer)
DUALS pop:Integer
INTERNAL move
EQUATIONS

QQ(Q1,Q2).push(I) = QQ(Q1.push(I),Q2);
QQ(Q1,Q2).move = QQ(Q1.pop(),Q2.push(Q1.pop()));
QQ(Q1,Q2).pop = QQ(Q1,Q2.pop()) RETURNS Q2.pop();

6

ENDCLASS TwoQs
The internal transitions, like move, represent nondeterminism in the requirements model which

needs to be resolved through implementation or, when we come to validate our models, made more
concrete through simulation.

Using only the ADT speci�cation, we can validate the whole system through animation, where
the user is required to take control over all the actions in the system and this assumes that they
have global understanding. This is �ne for small systems (like TwoQs) but is not realistic when
we have large, complex systems of many components. In such cases, we have to permit compo-
sitional validation. A �rst step towards this is to formally specify the way in which components
communicate and interact. For this we use a process algebra.

3.2 Process Algebra for communication validation
The �rst step is to specify how the complete system interacts with its environment. This is done
by wrapping the ADT speci�cation inside a process speci�cation. The ADT part of the LOTOS
speci�cation, not shown in the code below, is generated automatically from the OO ACT ONE
speci�cation, and is used to parameterise the process de�nition for the corresponding behaviour.
In this case, type TwoQs parameterises the behaviour of process TwoQs.

PROCESS TwoQs[push, pop](QQ:TwoQs): NOEXIT:=
HIDE move IN
(push? Integer1:Integer; TwoQs[...](push(QQ,Integer1))
)[]
(pop; pop! popRESULT(QQ); TwoQs[...](pop(QQ))
)[]
(move; TwoQs[...](move(QQ)))

ENDPROC (* TwoQs *)

This particular LOTOS design, chosen for its simplicity, speci�es that a remote procedure call protocol
is used for communication with the TwoQs process. (Other types of protocol can also be generated auto-
matically.) The push operation is carried out synchronously between the object and its environment. The
pop operator requires some result to be returned and we model the communication of the result as an
event di�erent from the service request. The move operation is hidden from the environment of the TwoQs
process: as such, the movement of elements between the two queues cannot be determined by the TwoQs
client(s).

7

3.3 Process algebra structure for compositional validation
It is now possible, using a pre-de�ned correctness preserving transformation, to re-use the compositional
structure found in the OO ACT ONE speci�cation in a structurally equivalent compositional LOTOS
speci�cation. This results in an equivalent speci�cation with two Queue processes synchronising on an
internal move event. We illustrate this below, in a partial speci�cation.

PROCESS TwoQs[push, pop](QQ(Q1, Q2)): NOEXIT:=
HIDE move, pop1, push2 IN
Queue[push, pop1](Q1)
|[pop1]|
Control[move, pop1, push2]
|[push2]|
Queue[push2, pop](Q2)
where ...ENDPROC (* TwoQs *)

In this speci�cation, we now have a control process which models the internal movement of
elements between the queue processes. Using the structure in this speci�cation, we can now carry
out our validation in a compositional manner. We can validate any single process component (or
sets of components) through simulation of the other components in the system. For example,
perhaps the client wants only to validate the behaviour of the input queue. In our animation we
would provide only control of the push and pop operations of the input queue; all other operations
would be controlled by a simulator. In a second case, the designer may wish only to validate that
the movement of messages is being correctly modelled by the control process. Here, the animator
would have to simulate the pushing of messages onto the system and the popping of messages o�
the system (in a realistic manner).

3.4 Client-Server View and eventuality requirements
The type of LOTOS design seen above is quite close to the type of client-server model that is
found in many reference models for software development, see [25, 24], for example. We can say
that the environment of a TwoQs process is its client. Now let us consider a liveness property which
we would reasonably require such a system to ful�l. The nondeterministic move operation cannot
be guaranteed to be carried out when we specify only safety properties. We may require that if an
element is pushed onto the �rst queue, then it will eventually be moved to the second queue. We
do not wish to specify how this happens, only that it does. This is the essence of abstraction with
regards to the nondeterminism in our system: we need to be able to specify fairness at the `class
level of abstraction'.

8

Furthermore, we need to consider what happens when a server has multiple (concurrent) clients.
If an object in the server's environment requests a push how can we be sure that it will be carried
out even though, in this case, it is always enabled? The problem is as follows: if the server is
shared between other clients then how do we guarantee that one client's requests will eventually
be carried out? Certainly, we could specify some sort of queueing protocol for simulation purposes.
In essence, we use the TLA to verify properties of our simulations.

4 Simulation, validation and veri�cation
4.1 Validation and veri�cation
It is important to understand the di�erence between validation and veri�cation: the �rst is is
about checking that a formal model correctly captures the client's needs, and the second is about
checking that a formal model meets the requirements of another formal model. We can verify the
consistency of a requirements model by showing that it's operational requirements meet its logical
requirements, or that two sets of logical requirements are not contradictory. This is not validation;
it is, however, complementary to validation � it should not be possible for a client to validate a
model which is logically inconsistent (i.e. impossible to implement). Such a situation arises out of
contradictory requirements and is often seen when requirements are extended independently. (The
feature interaction problem [16] is a good example.)

4.2 Nondeterminism and simulation
Communication between a (sub)system and its environment can be modelled nondeterministically.
For example, with the move transition between queues we are forced to simulate the moves in order
to validate the system. Temporal logic can be used to prove that the simulation is correct with
respect to certain temporal constraints.

4.3 Animation, validation and simulation
The key to our validation is the operational object oriented semantics which, through graphical
animation, provide support for customers to validate their understanding of their requirements,
rather than validating their understanding of the models. However, when the validation involves
simulation of part of the internal parts of the system then there is a problem if we cannot be sure
that the simulation is correct: if the simulation is wrong then the customer has correctly validated
the external behaviour of the system but wrongly validated the internal parts. In other words,

9

they are happy with the behaviour speci�ed but make wrong assumptions about how it will be
implemented. For this reason, we also need to consider validation of our simulation models.

4.4 Veri�cation, theorem proving, model checking and simulation
As explained earlier, we have to be able to verify the logical consistency of our requirements �

� Invariants: These are de�ned in all structured classes. We use a theorem prover [1] to show
that all the operations of the class are closed with respect to its invariants. For example, to
prove that integers are never lost in the move between queues, we specify that the number of
elements in queue1 and the number of elements in queue2 is always the same as the number
popped o� subtracted from the number pushed on.

� Fairness: Using TLP [13], the TLA theorem prover, we are able to prove eventuality prop-
erties. For example, by specifying fairness on the movement of elements (moves will always
eventually take place if there is something to move) then we can prove that any element
pushed on will eventually arrive at the second queue.

� Algebraic Composition: In [17], we introduced the notion of re-usable analysis techniques
based on performing analysis on abstract superclasses and abstract composition mechanisms.
For example, we can prove that if we replace the move operation by two moves around a
thrid queue then we do not change the abstract behaviour of our system.

4.5 Simulation validation
We have noted that we had to simulate parts of the system in order to validate other parts. In
this way we can test products and services before we have to make changes to the underlying
implementation architecture, and before providing the customer with a working model. In the
parts of the system being simulated, there is a fundamental di�culty in trying to compare the
behaviour of the simualtion model and the behaviour of the reality being modelled. In our formal
approach, we can specify logical properties that are obtained through observation (or analysis) of
the real world, and verify that these properties are consistent with our simulations.

5 Tool Integration
5.1 Why integrate?
It is important that a development method is supported by a suite of tools for synthesis and
analysis which share a common formalism and a common interface. Our development framework

10

includes six di�erent tools:

� An animator for validating the behaviour with the client

� A simulator for control non-determinism during animation

� A prover for verifying the logical consistency of the requirements

� A model checker for testing the properties that the prover cannot verify automatically

� A library of classes, graphical mappings, validations, proofs and test suites

� A development manager for incremental re�nement of requirements.

This integration is important because it is counter-productive to try and separate these aspects.
A model checker is an automated animation process where all possible sequences of actions are
tested. A model checker with user control over choice of actions provides the same functionality
as an animator. A model checker with statistical control over nondeterminism resolution provides
the same functionality as a simulator. Furthermore, animation can verify logical properties dy-
namically, provers often animate in order to identify critical cases, and incremental development
involves re�nement of both logical and operational properties.

5.2 Why Graphical Animation?
Graphical views have long been used to represent large quantities of information in a simple
and concise form. Humans have evolved a very complex mechanism for collecting and colating
information that is presented graphically. Understanding the information depends on clarity of
expression which, in turn, relies on meaningful structure. Graphical models can provide both
these properties. Graphical views are prominent at all stages of software development because of
their ability to convey structural aspects of a system.

All standard software visual models are particular types of graph � each model attaches
meaning to the labelling of nodes and links and the relationship de�ned between connected nodes.
Categorisation of graphical models is simply a grouping together of models in which the meaning
attached to the views shares some commonality. It is precisely the meaning attached to graphical
views which distinguishes di�erent models.

The underlying modelling language (semantic basis) is a major in�uence on the structure of a
visualisation environment. Because the environment manipulates components in the language, this
directly in�uences the environment's structure and form, though not necessarily its presentation
to the user. A visual representation must be able to naturally model a conceptual system with

11

the minimum amount of mental transfer and mapping on the part of the modeller (or viewer). We
advocate an approach in which the fundamental modelling blocks are objects and classes.

There are three distinct modes of operation in our method:

� Visualisation is the process by which mappings are de�ned between formally speci�ed
models and graphical constructs.

� Synthesis is the creation of new classes of behaviour and re-use of already existing classes.
Synthesis mechanisms utilise the visual mappings and may even be de�ned in terms of visual
manipulations.

� Analysis is the feedback step. The development of requirements models is an evolutionary
process. Initially, there will be many problems which will gradually be removed by customer
and analyst. Analysis can be improved through the use of visual mappings and graphical
animations.

Animation is the visual analysis of the dynamic properties of the requirements models. In our
method we encourage experimentation, where the client animates many di�erent test scenarios for
any given model.

5.3 Experimentation
Experimentation is the phase that follows the construction of a new requirements model. The
purpose of experimentation is to learn more about the system under study by subjecting its model
to various interaction sequences selected from ligitimate inputs. The process of constructing ex-
periments is itself a modelling activity: one builds a model (or models) of the environment of the
system being analysed. This can be done in an ad-hoc fashion by the viewer subjectively selecting
interactions during each cycle of the animation. We must also provide facility for a more planned
creation of experiments which permit the controlled exercise of the system through di�erent sim-
ulation scenarios. There are a number of important aspects to experimentation:

� Full animation vs Statistics Gathering
The experiment, together with the system model, may be executed without interaction from
the viewer. This auto-animation can either be presented to the viewer as-if they were involved
in the visual interactions. Contrastingly, the viewer may not wish a full animation to be
presented. In many cases the animation process is being used to check a set of prede�ned
properties or for the purpose of gathering statistics. We o�er each of these facilities.

� What vs How
Experimentation, as a closed model, can present the behaviour of a system as a black box

12

� the internal state of the system can be abstracted away from and only the sequence of
interactions need to be presented for analysis. In other words, the analysis is concerned only
with what the system is doing at its external interface. This type of black box testing is
�ne in requirements models which are complete. However, whilst the modelling process is
continually re�ning both what is being speci�ed and how it is being speci�ed, it is important
that the viewer can choose to see di�erent internal properties of the model in question.

� Nondeterminism
During requirements capture, the modeller often wishes to specify nondeterministic be-
haviour. There is �exibility (during animation) in choosing random number generators or
using a pre-de�ned algorithm or data �le for simulating this nondeterminism..

5.4 Library as language: the future ideal
We believe that the future of our method depends on the notion of library as language. One
of the keys to the success of object oriented programming languages is the way in which new
programmers can learn the language in a problem speci�c way, through use of libraries of classes.
Each programmer must understand the fundamental concepts and language constructs, but the
class libraries then act as the language extensions. Often, object oriented programmers are expert
in certain problem domains and this corresponds to the libraries with which they are familiar.
Requirements capture techniques should, we believe, o�er the same advantages. The client should
be able to build models using their own language and this can be achieved by the analyst creating
libraries of re-usable classes which are client-oriented. These libraries then de�ne the vocabulary
of the problem domain being modelled.

6 An industrial case study: telephone service development
6.1 Problem Overview
The complexity of standard telephone behaviour is growing exponentially due to the number of
services (or features) available. The feature interaction problem occurs when two or more features,
whose individual behaviours are easy to specify and validate with the client, introduce unforseen
problems when they are asked to work together (see [5, 6] for a wide range of papers on the subject).
Formal methods have been proposed as a means of controlling the complex analysis required for
the detection and resolution of these problems [2]. It is well accepted that these formal techniques
should be applied as early as possible in the development process. Thus we have a need for formal
requirements models [16, 31].

13

6.2 Informal requirements models
Intuitively, we can see that a telephone user may wish to express di�erent types of requirements:

� Safety requirements � where the user speci�es things that must never happen. These
can be state based, sequence based or property based. A state based safety requirement
corresponds to the user never wanting to be in a certain concrete state (e.g. My answering
machine should never take a message from a FAX). A sequence based safety requirement
corresponds to the user never witnessing a sequence of external actions (e.g. putting the
phone on-hook , lifting the phone off-hook and then hearing a busy signal). A property
based safety requirement corresponds to a state based requirement where the state is speci�ed
abstractly over a number of possible states which are not explicitly listed (e.g. never wanting
to pay for an overseas call).

� Liveness requirements � where the user speci�es that something good will eventually
happen. These usually correspond to di�erent types of fairness or eventuality needs. For
example, my answering machine should eventually take a message if I don't reply. Eventuality
requirements are common in user-oriented speci�cations because they help to abstract away
from the network.

� Nondeterministic and consistency requirements � where the user speci�es a number
of di�erent behaviours which would be acceptable and may require that the nondeterminism
be resolved in a consistent fashion. For example, I don't mind whether my answering machine
or my FAX get priority so long as the priority cannot change unexpectedly.

� Compositional requirements�where the user speci�es new needs by `combining' already
existing services. For example, a user with an answering machine and call hold may wish
to let a held caller leave a message while they are waiting, and thus give them the option of
abandoning the call if they have to wait too long.

� Specialisation and extension requirements � where the user speci�es new needs by
making re�nements to already existing services. For example, a user may require an answering
machine which restricts the length of messages that can be left.

In the following sections, we comment on the modellingof the plain old telephone service (POTS)
and the veri�cation and validation of POTS requirements.

6.3 The formal POTS models
Consider the (partial) OO ACT ONE speci�cation of the POTS phone, where we list only a subset
of the equations:

14

CLASS POTS USING Number, Signal, Hook
STRUCTURES phone(Signal, Hook)
ACCESSORS listen:Signal, on-off: Hook
TRANSFORMERS lift, drop, dial(Number)
INTERNAL otherbusy, otherfree, otherhook, otherdialIn, noline
EQUATIONS

phone(ringing, on).lift() = phone(talking, off);
phone(talking, off).drop() = phone(silent, on);
phone(talking, off).otherhook() = phone(noline, off);

...ENDCLASS POTS
The telephone system is then composed from a number of these phones, together with a model

of the underlying network. We note that there is much more nondeterminism in the model and
therefore much more work for the simulator to do during animation.

6.4 Validation and veri�cation
We have text-based animators for validating the operational requirements in the composed system.
We also have JAVA mappings from textual speci�cations to graphical representations. Current
work is concerned with integrating these mappings into the animation tools in order to provide
graphical animations. Validation of the telephone models has been done using a mixture of text
and graphics. The animators have been used in three distinct ways:

� We use the formal speci�cations of a network and a number of phones (in practice, three
phones are su�cient for validation of the simple POTS with no additional features) in a
composition which simulated a telephone system. All nondeterminism was resolved inter-
nally and the analysts, designers and clients could watch random animations as a means of
validating the integration of the network and telephone models.

� We had client-led animations where the system was partly controlled by the network simulator
and partly controlled by the client. The client could control any number of phones and the
animator controlled the remaining part of the system simulation.

� We had designer-led animations where all the phones were controlled by the simulator and
the designer chose how to resolve the nondeterminism in the network.

In all cases animation was done in parallel with veri�cation of always and eventually properties.
In fact, animation was also a good tool for improving the understanding of the proof process.

15

7 Conclusions
Simulation is a tool which can help to locate errors earlier in the development process and reduce
costs and compress schedules. Our formal models � at all levels of abstraction � are fully machine-
intelligible and machine interrogable. The compositional validation techniques make it much easier
to locate modelling errors which is crucial when dealing with complex systems.

We advocate a mixed-semantic approach to requirements engineering. Only through formal
methods can integration of di�erent client's needs be veri�ed. Only through graphical animation
can clients be expected to validate complex models. The quality of the validation depends on the
quality of the model of the system to be developed and the quality of the model of the environment
of this system. These models can be used as simulations in order to facilitate di�erent abstractions
on the same complete system. Simulation, validation and veri�cation are complementary aspects
of requirements capture.

References
[1] B-core. B-Toolkit User's Manual, Release 3.2. Technical report, B-core, 1996.

[2] J. Blom. Formalisation of requirements with emphasis on feature interaction detection. In
Feature Interactions In Telecommunications IV, Montreal, Canada, June 1997. IOS Press.

[3] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation language LOTOS. Com-
puter Networks and ISDN Systems, 14:25�59, 1987.

[4] G. Booch. Object oriented design with applications. Benjamin Cummings, 1991.

[5] L. G. Bouma and H. Velthuijsen, editors. Feature Interactions In Telecommunications. IOS
Press, 1994.

[6] K. E. Cheng and T. Ohta, editors. Feature Interactions In Telecommunications III. IOS Press,
1995.

[7] P. Coad and E. Yourdon. Object oriented analysis. Prentice-Hall (Yourdon Press), 1990.

[8] P. Coad and E. Yourdon. Object oriented design. Prentice-Hall (Yourdon Press), 1990.

[9] L. Constantine. Beyond the madness of methods: System structure methods and converging
design. In Software Development 1989. Miller-Freeman, 1989.

[10] Brad Cox. Object oriented programming: an evolutionary approach. Addison-Wesley, 1986.

16

[11] Geo� Cutts. Structured system analysis and design method. Blackwell Scienti�c Publishers,
1991.

[12] T. DeMarco. Structured analysis and system speci�cation. Prentice-Hall, 1979.

[13] U. Engberg. TLP Manual-(release 2. 5a)-preliminary. Department of Computer Science,
Aarhus University, May 1994.

[14] J.-P. Gibson and D. Méry. A Unifying Model for Speci�cation and Design. Rapport Interne
CRIN-96-R-110, CRIN, Linz (Austria), July 1996.

[15] J. Paul Gibson. Formal object based design in LOTOS. Tr-113, University of Stirling, Com-
puting Science Department, Stirling, Scotland, 1994.

[16] J. Paul Gibson. Feature requirements models: Understanding interactions. In Feature Inter-
actions In Telecommunications IV, Montreal, Canada, June 1997. IOS Press.

[17] J. Paul Gibson. Towards a feature interaction algebra. In Feature Interactions In Telecom-
munications V, pages 217�231, Lund,Sweden, September 1998. IOS Press.

[18] J. Paul Gibson, Bruno Mermet, and Dominique Méry. Feature interactions: A mixed semantic
model approach. In Irish Workshop on Formal Methods, Dublin, Ireland, July 1997.

[19] J. Paul Gibson, Bruno Mermet, and Dominique Méry. Speci�cation of services in a composi-
tional temporal logic. Rapport de �n du lot1 du marche no 961B CNET-CNRS CRIN, CRIN,
1997.

[20] J. Paul Gibson and Dominique Méry. Fair objects. In OT98 (COTSR), Oxford, May 1998.

[21] J.Paul Gibson. Formal Object Oriented Development of Software Systems Using LOTOS.
Thesis csm-114, Stirling University, August 1993.

[22] Paul Gibson and Dominique Méry. Always and eventually in object models. In ROOM2,
Bradford, June 1998.

[23] R. Guillemot, M. Haj-Hussein, and L. Logroppo. Executing large LOTOS speci�cations. In
Proceedings of Prototyping, Speci�cation, Testing and Veri�cation VIII. North-Holland, 1991.

[24] ISO/IEC. Speci�cation styles for structuring of OSI formal descriptions. ISO/IEC
JTC1/SC21/N669, International Organisation for Standardisation, 1989.

[25] ISO/IEC. Working document on topic 6.2 - formalisms and speci�cations. information re-
trieval, transfer and management for osi. ISO/IEC-JTC1/SC21/WG7, International Organi-
sation for Standardisation, 1989.

17

[26] L. Lamport. A temporal logic of actions. Technical Report 57, DEC Palo Alto, april 1990.

[27] B. Liskov and Zilles S. Programming with abstract data types. In ACM SIGPLAN Notices,
number 4 in 9, pages 50�59, 1974.

[28] B. Meyer. Re-usability: the case for object oriented design. IEE Software Engineering, March
1987.

[29] K.J.T. Turner. Using FDTS: An Introduction To ESTELLE, LOTOS and SDL. John Wiley
and Sons, 1993.

[30] van Eijk, Vissers, and Diaz. The Formal Description Technique LOTOS. North-Holland,
Amsterdam, 1989.

[31] Pamela Zave. Feature interactions and formal speci�cations in telecommunications. IEEE
Computer Magazine, pages 18�23, August 1993.

18

