
Formal Requirements Engineering:
Learning from the students

J. Paul Gibson,
Department of Computer Science,

NUI Maynooth, Ireland.
pgibson@cs.may.ie

Abstract

Formal methods are becoming increasingly important in
many areas of software development and should be incor-
porated in the teaching of software engineering. Require-
ments capture is, in our opinion, the hardest stage of de-
velopment for students to learn and for lecturers to teach.
This paper reports on our experience in teaching require-
ments engineering using formal methods, where we advo-
cate a multiple methods approach in which students get to
evaluate a large range of specification languages: students
are more likely to learn the principles of good requirements
engineering rather than become experts in one particular
(formal) method. The need for formality is introduced step-
by-step, where new concepts are identified by the students
through the use of case studies. These concepts are then
formalised in the most appropriate language or notation.
Students are encouraged to question the need for formality
— each requirements engineering method is a compromise
and the use of formal models needs to be placed within the
context of the choices that a requirements engineer has to
make.

1 Introduction

Formal methods should be taught as part of any degree
in computing science or software engineering. We believe
that discrete mathematics is the foundation upon which soft-
ware development can be lifted up to the heights of a true
engineering discipline. The transfer of formal methods to
industry cannot be expected to occur without first trans-
ferring, from academia to industry, graduates who are well
grounded in such mathematical techniques.

This paper reports on our first attempt to teach a formal
methods course as part of a degree in software engineer-
ing. In [15] we gave a global picture of teaching formal
software engineering. This paper examines the requirement

engineering issues, which were the most difficult to explain
to the students for a variety of reasons:

� Moving from informal to formal — the requirements
document is the first point of reference in the software
development process. The step of going from infor-
mal understanding of a problem to a (formal) record-
ing of this understanding is very difficult to learn (and
to teach).

� Coping with changing needs — it is the nature of re-
quirements to change. Thus, students must learn how
to develop techniques which are both flexible and in-
cremental. This involves a deep understanding of the
compromises that exist within modelling.

� Working in different problem domains — to build
good requirements models one must have a good un-
derstanding of the problem domain which is being
modelled. When teaching a requirements engineering
course there is always a risk that one will end up teach-
ing about problem domains rather than about require-
ments modelling. However, students must also learn
that requirements modelling and analysis go hand-in-
hand: if they work in well-understood domains then
they will never learn the importance of the analysis.

� The need for customer orientation — one must not
lose sight of the customer in the whole process.

Rather than concentrating on one particular requirements
engineering formalism or method, we worked on a set of
small case studies, using mathematics and specification no-
tations in a flexible and intuitive manner, where the students
could appreciate the need for formality. Each case study
was intended to illustrate why formalism was needed, what
sort of formalism could meet our needs and how to define
and (re)use this formalism. The case studies were not in-
tended to rival those which the students had already seen in
standard modelling languages — they had previously seen

ER diagrams, UML, SSADM and many other graphical no-
tations — our goal was to show that there was a need for
formality and that the formal models could complement the
less rigorous approaches.

An unexpected result was that we also identified weak-
nesses in our understanding of formal methods: students’
naive questioning helped us to identify how the methods,
and the teaching of these methods, could be improved. In
brief, it was not just the students who were learning!

Before we proceed to the main body of this report, we
give some background information concerning the course.
The course was taught at the Université Henri Poincaré
(Nancy I), France. It was part of the degree Ingnierie Math-
matiques et Outils Informatiques. The title of the course is
(after translation): Software Engineering (using
formal methods). The degree would be the equivalent
of an MSc at a British University. There were 19 students
who had already studied software engineering using many
different models and methods. The course was taught in
36 hours: we estimate that between 12 and 16 hours were
spent on formal requirements engineering (not including
their practical course work).

In section 4.6, we comment on the feedback we had from
the students which led us to change some aspects of the
material and teaching techniques. We also comment on how
some of the course material is being re-used in a Masters of
Software Engineering degree at NUI Maynooth, Ireland.

2 Related Work

The teaching of formal methods has been somewhat ne-
glected as a subject in conferences and journals: the motiva-
tion for this paper was to increase awareness of the need for
collaboration in this area. However, we have found some
material which, if not directly related to our problem of for-
mal requirements engineering, did influence our approach.

2.1 Workshops

A CTI workshop on Teaching Formal Methods, was held
at the University of Huddersfield in September 1995. In
general, this workshop addressed the problems of moti-
vation, doing real proofs, and integrating formality with
more graphical development methods. Specific problems
of teaching with Z [28], one of the favoured teaching lan-
guages, and choosing teaching material were also exam-
ined. The workshop did not directly address the problem
of requirements capture.

An earlier workshop — Teaching Formal Methods Cur-
riculum Development Workshop — was held in Hamilton
College Clinton, New York, in August 1994. The purpose
of the workshop was to develop modules and materials for
teaching formal methods in an undergraduate setting. The

modules covered material such as: propositional/predicate
calculus, with applications to assertions/pre- and post-
conditions, loops and invariants, category theory, algo-
rithm design, parallel constructs, operational semantics, for-
mal methods with OOP, and applications of mathematica.
Again, the workshop did not address the subject of this pa-
per.

2.2 Published papers

We were also encouraged by a range of papers which ex-
plain the teaching of functional programming [20, 21] logic
[17, 19] and discrete mathematics [18] to computing sci-
ence students. (Hart et. al. [16] suggest that this can be
done with school children, and many of their techniques
are equally applicable for our university students!) There
is also an interesting calculator case study [26] which illus-
trates the formal reasoning about programs, and comments
on how this can be used to introduce formal methods.

2.3 Web material

A large number of universities also provide information,
on the internet, with regard to their formal methods courses.
It is beyond the scope of this paper to review all the mate-
rial that is available: our impressions are that most courses
are method-oriented and concentrate on verification rather
than validation techniques. This would not be suitable for
teaching requirements modelling.

3 The Introductory Lectures

3.1 Software Engineering and Formal Methods

By way of motivation, and introduction, a brief overview
of the first lecture is given in figure 1, where the following
questions were answered: What is software engineering?
What is a formal method? Why apply formal methods in
software engineering?

Figure 1 illustrates the different steps in a traditional
engineering process: analysis, requirements capture, de-
sign, implementation, and evolution. The formal methods
are principally concerned with maintaining correctness, the
property that an abstract model fulfils a set of well defined
requirements [2, 4, 8, 7], between the initial customer ori-
ented requirements model and the final implementation ori-
ented design. The formal boundaries break down at either
end of the software development process because, in gen-
eral, target implementation languages are not formally de-
fined and customer understanding of their requirements is
not complete.

C
om

m
un

ic
at

io
n

Im
plem

entation

Problem

System
(Program)

 Mathematics

validation verification

DesignRequirements

SOFTWARE ENGINEERING

FORMAL METHODS

Architectural Concepts

ConcreteAbstract
software

engineering

evolution

structured
structured

Figure 1. Software Engineering and Formality

Software development has reached the point where the
complexity of the systems being modelled cannot be han-
dled without a thorough understanding of underlying fun-
damental principles. Such understanding forms the basis
of scientific theory as a rationale for software development
techniques which are successful in practice. This scientific
theory, as expressed in rigorous mathematical formalisms,
must be transferred to the software development environ-
ment. Only then can the development of software systems
be truly called software engineering.

3.2 Requirements Engineering: an overview

Requirements engineering appears as the first step in the
formal development process. As such, a general overview
of this development step formed the backbone of the 2nd
lecture. The goal was to explain the following:

� Why requirements engineering is important
Analysis is the process of maximising problem domain
understanding. Only through complete understand-
ing can an analyst comprehend the responsibilities of
a system. The modelling of these responsiblities is a
natural way of expressing system requirements. The
modelling process increases understanding. Once the
model is sufficiently rich to express all that is needed,

then the analysis is complete and design can begin.

� Why the customer is important
The simplest way for an analyst to increase under-
standing is through interaction with the customer. The
customer may be one person, in which case the Re-
quirements Capture and Analysis (RCA) process is
much simplified; however, it is more likely that the
customer is a group of clients, each with their own par-
ticular needs. These clients may be people, machines,
or both. One of the main problems in dealing with a
set of customers is that the inter-related set of require-
ments must be incorporated into one coherent frame-
work. Each client must be able to validate his (or her)
own needs irrespective of the other clients (unless of
course these needs are contradictory).

� Why the process can never be perfect
Interaction with the customer is an example of infor-
mal communication. It is an important part of analy-
sis and, although it cannot be formalised, it is possi-
ble to add rigour to the process. A well-defined anal-
ysis method can help the communication process by
reducing the amount of information an analyst needs
to assimilate. By stating the type of information that
is useful, it is possible to structure the communication

process. Effective analysis is dependent on knowing
the sort of information that is required, extracting it
from the customer, and recording it in some coherent
fashion.

� Why requirements engineering is difficult
The analysis model must be capable of fulfilling two
very different needs. Firstly, it must be customer ori-
ented, i.e. there must be a direct correspondence be-
tween the model and how the customer views the prob-
lem. Secondly, the model must be useful to designers.
The system requirements must be easily extracted, and
the structure of the problem domain must be visible for
(potential) re-use in the solution domain. The easiest
way in which a model can play this dual role is if the
same underlying notions and principles are present in
the problem and solution spaces.

� How formality can help
Mathematical rigour is necessary for formal validation,
testing and completeness and consistency checking.
The advantages of formal methods in the specification
of requirements are well documented (see [6, 3, 9], for
example).

� How formality can hinder
Formal methods do not come for free. They require
much more rigorous development techniques which
are more time consuming and more difficult to mas-
ter. Furthermore, formal methods risk being too dif-
ficult for the client (or engineer) to understand. Extra
work is required to make them presentable to anyone
other than the (mathematically oriented) requirements
engineer.

� The difference between validation and verification
It is important that the requirements engineer under-
stands that validation is about checking that a for-
mal model correctly captures the client’s needs, and
that verification is about checking that a formal model
meets the requirements of another formal model. We
can verify the consistency of a requirements model by
showing that it’s operational requirements meet its log-
ical requirements, but this is not validation.

3.3 Requirements Engineering: goals, principles
and methods

The main goals of the formal requirements engineering
part of the course were: teaching principles, teaching (re-
quirements) engineering as a process of compromise, giv-
ing an overview of standard formal techniques and methods,
and teaching students how to evaluate tools and techniques
with respect to different problem domains. We also wanted

to emphasise that formality is not the solution to all engi-
neering problems and that the mathematical models should
be complementary to the less rigorous techniques which are
more commonly used in industry.

Five of our case studies, reviewed in section 3, illustrate
how we attempted to reach these goals. The case studies
involved using a number of different formalisms; in this
paper we report on using ACT ONE (an ADT[24] which
forms part of the formal specification language LOTOS[5])
for explaining abstraction, using Caml (a functional pro-
gramming language, based on SML[27]) for explaining de-
sign transformations and equivalence, using OO ACT ONE
[11] for explaining incremental development, using tem-
poral logic (TLA[22]) for explaining integration problems,
and using purely operational state transition models for ex-
plaining the need for nondeterminism. This list is not ex-
haustive: in other studies we used, for example, B[1], Z[28]
and PVS[25]. We do not claim to have taught any of these
formalisms in any detail. We did, however, try to convey the
idea that some formalisms are better suited to some prob-
lems than others.

4 The case studies

4.1 Teaching — abstraction

It is often said that requirements state what not how.
This can be quite misleading since the crux of the matter is
the notion of abstraction. We should say that requirements
should be abstract enough to allow for many different cor-
rect implementations, whilst being concrete enough so that
clients and designers can use them as a medium for under-
standing what is really required.

Abstract data types are often used to show how abstract
requirements models can be built. We expanded upon this
by showing how an ADT can be thought of as an abstract
class specification. Then, we showed how such a class can
be used as a super-class of a more concrete implementation
class. We also wanted to show that requirements may be
both logical and operational. The concept of invariant prop-
erties, within the ADT specification of a class, showed the
two different points of view. A simple set class was used to
illustrate these important aspects of requirements capture.

4.1.1 The set requirements

The original idea for this study came from a French text on
graph algorithms [23], where the author explained that the
way in which sets where implemented has a great influence
on how they can be used for graph problems: where graphs
are specified as sets of nodes and arcs. We examined how
different set structures could benefit the implementation of

certain algorithms whilst other structures made the imple-
mentation more difficult. In this way we argued that over-
specification of an abstract set could have unwanted knock-
on effects with regards to the later design stages.

To begin, the students were asked to specify a set using
the abstract data type ACT ONE. All the students took a lin-
ear approach much like one would see in an implementation
using linked lists. The listing, below, is typical of a correct
specification developed by the students:

TYPE Set is element SORTS Set
OPNS empty:-> set

add: set -> bool
remove: set,element -> set
contains: set, element -> bool

EQNS remove(empty, el1) = empty;
[el1 eq el2] =>
remove(add(S,el1),el2)=remove(S,el2);

[el1 neq el2] =>
remove(add(S,el1),el2)=add(remove(S,el2),el1);

contains(empty,el) = false;
[el1 eq el2] =>
contains(add(S,el1),el2)=true;

[el1 neq el2] =>
contains(add(S,el1),el2)=contains(S,el2);

We went on to show the students that the internal (list-
like) structure of their specification was quite arbitrary and
there were a number of ways in which the set specification
could have been written: as an ordered list or binary tree,
for example.

4.1.2 Some requirements engineering problems

In the ADT specification the groups produced fundamen-
tally two different (yet equivalent) specifications. Two
groups produced specifications in which adding an ele-
ment first checked if the element was already in the set and
did not change the set if this was true. Three groups pro-
duced specifications (similar to the code above) in which the
remove was defined to remove multiple elements whilst
the add allowed multiple entries. One group fell between
these stools and did not realise that there was a problem
with multiple elements. The students wanted to know which
specification was best: here we had to explain the notion
of equivalence, invariants and the need for extensibilty. A
more difficult question was how to specify the set more ab-
stractly so that both of these specifications were correct.
This led the students to pose the following question:

Why do we say that one model is more concrete
(or abstract) than another if they express the same
requirements?

4.1.3 Lessons learned

It was important to teach the students that operational se-
mantics were not the only option for building requirements
models. The set could be specified informally as:

One can add and remove elements, and test if an
element is in the set. After removing an element,
the test will return false (for the element just re-
moved). After adding an element, the test will re-
turn true (for the element just added), until the
element is removed.

These are properties that we would like a requirements
model to exhibit and as such could be said to be more
abstract requirements. We showed how the students’ ab-
stract data type specifications could be proven to exhibit
such properties (expressed in temporal logic). The problem
seemed to be that certain requirements are quite naturally
specified operationally, others are better specified logically,
and the majority need a mixed-semantic point of view.

After this case study we realised the need to look at the
notion of abstraction level. In fact, we identified 2 aspects
of a specification which could be said to influence its level
of abstraction, namely: the amount of structure and the
amount of nondeterminism. It can be argued that adding
structure to a specification can reduce implementation free-
dom: it may be very difficult to restructure a specification
towards a certain implementation architecture (during de-
sign) if the structures found at both ends of the development
spectrum are conceptually very different. Furthermore, it
can be argued that nondeterminism in a specification pro-
vides an explicit engineering choice which must be taken
when mapping onto a particular implementation architec-
ture: the more nondeterminism then the greater level of
freedom in making design decisions. However, we stress
that this issue is not clear cut and there is no generally ap-
plicable measurement for level of abstraction within a spec-
ification model.

4.2 Teaching — importance of structure

The original idea for this study came from working on
graph algorithms, using Caml (a functional programming
language based on SML[27]). The goals were to exam-
ine the importance of structure in requirements models and
show how equivalent specifications could have different
structures.

4.2.1 The graph requirements

The question posed was as follows:

Using lists and cartesian products, represent the
graph G, as shown in figure 2.

The four most interesting representations, proposed by the
students, are shown to the right of the diagram. Using their
chosen representations, they were then asked to write con-
version functions for going from one form to any of the oth-
ers, thus illustrating that their equivalence was based on iso-

1

2

3

4

a

b

c
b

G:Graph
Caml Representations

 [(1,[(a,2)]), (2, [(b,3), (c,4)]), (3,[(b,4)]),(4,[(c,2)])]

[(a, [(1,2)]), (b, [(2,3), (3,4)]), (c, [(2,4), (4,2)])]

[(1,a,2), (2,b,3), (2,c,4), (3,b,4), (4,c,2)]

 ([(1,a,2),(2,b,3),(3,b,4)], [(2,c,4)])

Figure 2. Structuring Understanding

morphic mappings. The result was that the following ques-
tions were posed:

� Using the first notation, what graph is represented by
[(1,[(a,2)]),(3,[(b,1)])]?

� Using notations 2, 3 and 4, how do you represent
a graph which contains a node unconnected to other
nodes? For example, the graph with one node and
no arcs can be represented using the first notation as
[(1,[])] but cannot be represented in the other
three notations.

� In all the notations, the order of the elements in the lists
is unimportant: is this the same sort of equivalence as
seen between different representations?

� In the fourth and final notation, the second list (with
a single element (2,c,4), in this example) rep-
resents those arcs which are bi-directional. In this
case a list element (x,char,y) is equivalent to
(y,char,x): what sort of equivalence is this?

4.2.2 Requirements engineering issues

Unintentionally, the graph example had shown the need
for invariants in compositionally structured specifications,
where the invariants are used to identify constraints between
the states of the specification components. The first graph
representation requires that all target nodes at the ends of
arcs, are themselves found in the graph. The students quite
easily specified this invariant with a Caml boolean function.

In the 3 other representations, there is no need for an in-
variant because the list of arcs implicitly defines the nodes
found in the graph. However, none of these can represent
the case of an unconnected node. Thus, these representa-
tions are incomplete.

4.2.3 Lessons learned

Given a flexibility in the way in which different structures
can be used to specify the same requirements, the students
wanted to know how they could judge which structure was
best. At this point we emphasised the need for client-
oriented models — if the client cannot understand the re-
quirements then validation cannot be done correctly and the
rest of the development process is compromised. When in
doubt, the best rule is to let the client’s understanding of
their needs provide the underlying structure of the require-
ments model.

4.3 Teaching — incremental development

The goals of this case study were to show the importance
of re-use (even in the early stages of development) and to
formalise the different types of re-use — re-use of abstrac-
tions, re-use of behaviour, re-use of validation, re-use of
verification, re-use of structure, and re-use of methods.

4.3.1 The drawing program requirements

This example was inspired from a long running (and recur-
rent) thread in the comp.object newsgroup, where the

seemingly trivial specification of a square as a subclass of a
rectangle was shown to be problematic. The problem posed
was the following:

In a drawing program, shapes are to be repre-
sented on the screen and manipulated. There is
already a mathematical classification of shapes
which exists in the problem domain. For exam-
ple, a square is a rectangle with all four sides
equal. Can, and should, we use this is-a relation-
ship to define a square as a subclass of rectangle
in our specification of the requirements of a draw-
ing program?

All the students said that the is-a relationship should be
used. We then posed the question of what happens if one
of the program’s functions is to move elements around the
screen. Having said that there was no problem, they were
then asked why there was no problem, and could they spec-
ify a function which would cause a problem. After some
encouragement, they managed to say that stretching a shape
may cause a problem: after you stretch a square it may no
longer be a square.

The students had already seen the importance of invari-
ants when they worked on the graph case study: here they
immediately saw the need of a square class invariant to
specify that all its sides are of equal length. Provided that
none of the rectangle operations can break this invariant
then the square can be defined as a subclass of the rect-
angle. However, if an operation such as stretch is
part of the rectangle interface, then square cannot
be defined as a subclass. Furthermore, if the square is
defined as a subclass of a rectangle then the square
itself cannot have a subclass extended by an operation like
stretch.

4.3.2 Requirements issues: Incremental verification
and validation

The drawing tool requirements, written in OO ACT
ONE[11] provided the students with a first chance to use
some of the tools which often accompany formal methods.
An animator let them validate behaviour compositionally.
An ACT ONE consistency checker was used to verify the
invariant properties for each of the classes.

4.3.3 Lessons learned

The students appeared to understand the role of formal
methods in subclassing better than their role in composi-
tion. As part of the drawing tool requirements, it was nec-
essary to integrate interacting functionality. The composi-
tion of the overall system required a clear understanding of
the way in which components where to be configured. The

hardest step for the students was validation of the config-
uration process: they had requirements components which
could have been put together in a number of different ways
and this configuration was not explicitly treated in the infor-
mal requirements which I had given them. We returned to
this problem in the telephone feature case study (see below).

In addition, we saw that re-use during requirements mod-
elling often depends on identification of re-usable compo-
sition mechanisms, rather than just re-usable components.
Unfortunately, it was too difficult for the students to under-
stand this issue at this early stage. In fact, structural and
architectural re-use can be said to be the hardest part of all
software engineering.

4.4 Teaching — integrating different formalisms

The students were asked to analyse the problem of
building requirements models for telephone services (like
call forwarding, call identification, call screening, etc . . .).
Within a few minutes they had identified the problem of
feature interactions [29]. This case study was intended to
show that this was a problem that existed at the require-
ments level, and which was best analysed using a combina-
tion of different models[14]. It was also intended to illus-
trate the need for formal methods.

4.4.1 The telephone service requirements

We decided to concentrate on two well-understood services:
an answering machine and call forwarding. These services
had to be added to the standard plain old telephone service
(POTS) requirements. It became clear to the students that
there were 3 types of telephone service requirements:

� operational — we should be able to perform certain
sequences of actions. For example: I want to be able to
phone someone without an answering machine, have
my call forwarded to an answering machine, and leave
a message.

� safety — we should never reach a state where some
unwanted property is true. For example: I never want
to leave a message and talk to someone at the same
time.

� liveness — we should eventually be able to reach a
certain state or be able to perform a certain action. For
example: I should eventually get to talk or to leave a
message.

The need for liveness led us to introduce the temporal logic
of Lamport (TLA[22]) and its theorem prover TLP[10].

4.4.2 Requirements engineering issues

The difficulty was not in formalising each of these require-
ments — they could now, after being introduced to TLA,
identify which formalisms would be best suited to mod-
elling each of the properties. The difficulty was in finding
a way of integrating them. In fact, only through integration
can the feature interaction be found:

I phone someone with an answering machine and
my call is forwarded to another phone which has
no answering machine. If my call is unanswered
then I may no longer be able to leave a message
at the original phone.

4.4.3 Lessons learned

The students learned that having an informal understanding
of a problem domain may not always help the process of
building a good requirements model within that domain. In
a familiar problem domain, one is tempted to incorporate
informal understanding in the models, without making this
explicit. More worryingly was the way in which this man-
ifests itself as implicit assumptions about the environment
of the system being modelled.

The students also now saw the importance of mixed se-
mantic models[13]. However, as this is an on-going area
of research, we considered it too advanced a topic for the
students to address in any more detail.

4.5 Teaching — putting it all together

The original motivation for this lift system problem came
from a study which was carried out when testing LOTOS for
specifying problems with an object oriented approach [12].
This problem was given as a course project (3 or 4 students
in each group). The problem was for them to specify (in
whatever way they wished) the requirements of a lift. The
goal was that they would begin to appreciate the need for
formality (particularly in the logic of lift movement between
floors).

4.5.1 The lift requirements

The informal requirements given to the students were as fol-
lows:

Specify the requirements that a user would place
on a lift system. Try to specify what is required
rather than how it is to be achieved. Explain how
you would validate that your requirements match
the user’s needs. After such validation, explain
how you would use your specification to verify
that a particular lift system behaved correctly.

The lift case study was a great success (for all the wrong
reasons). We were hoping that their informal specifica-
tions would be ambiguous, incomplete and inconsistent,
thus showing the need for formal models. However, the
students were one step ahead, again. Three groups took an
operational approach to specification — handing in what
amounted to well-documented pieces of C++ and JAVA
code. The other two groups shocked us even more by spec-
ifying the problem at a logical level of abstraction. They
stated, using temporal logic:

When I arrive at a lift on floor x and I want to go
to floor y, the lift will eventually arrive at x, let
me enter, eventually arrive at y, and let me exit.

4.5.2 Requirements Issues: Over- and under-
specification

The operational groups clearly had no problems with the
validation of their specification, but did not understand the
verification part of the problem. The logical groups did not
know what they had to validate, but knew precisely how to
verify that a given lift worked.

To test their understanding, we proposed two lift imple-
mentations:

� A ‘supermarket model’, where the user who wishes to
use the lift has to take a ticket and wait their turn. The
lift serves only 1 user at a time: going to collect them
at their current floor and then taking them to their re-
quested floor.

� A ‘no-logic model’ in which the lift moves continu-
ally from top to bottom, and back from bottom to top,
stopping for a few moments at every floor.

Using the case study, we now had examined the problems of
overspecification, the integration of logical and operational
views, and the difference between validation and verifica-
tion.

4.5.3 Lessons learned

To complete the study, we have set an exam question on
the problems of compositional development and re-use at
different levels of abstraction. The students were asked to
suggest ways in which lift systems could be composed from
2, or more, lift components. They realised that it was easier
to re-use abstract components than it was to re-use more
concrete components. In this way they learned the value of
abstraction in requirements models.

4.6 Course Feedback

At the end of the course, the students were asked to com-
plete a questionnaire (a copy of which can be provided on

request). Some of the most interesting feedback is sum-
marised below:

� They would have preferred to spend more time learn-
ing how to use the tools themselves rather than hav-
ing to rely on their teachers to demonstrate their
(in)effectiveness.

� They were frustrated at not having a real customer to
communicate with, because their teachers were always
used to play this role, and they thought this was rather
unnatural.

� A minority stated that they would rather have learned 1
formal method in great detail rather than just touching
the surface of a number of methods.

� A majority acknowledged the benefit of using formal
methods but could not see how they could be easily in-
coporated into the development tools with which they
were already familiar.

In the Autumn of 1999, we had the opportunity to re-
use some of the course material in the software engineering
masters degree program at NUI Maynooth. We decided to
address some of the issues raised by the students. In par-
ticular, we thought it important to choose 1 formal method
which they could learn in more detail whilst showing that it
had weaknesses in certain areas. We could then cover other
methods, in less detail, by showing how they addressed the
perceived weaknesses of our chosen language. It was also
decided to try and better explain how the formal methods
could be better integrated with other industry strength de-
velopment methods.

To meet these aims, we focussed on formalising object
oriented modelling. Our chosen specification technique was
LOTOS; this provided ADT and process algebra parts, and
had associated object oriented specification styles. Further-
more, the tool set incorporated an animator. Our teach-
ing technique continued to be case-study oriented, yet our
consistent use of a single specification language (and style)
was, we deemed, an improvement.

The masters program is not yet completed, so we have
not yet received any detailed feedback from our question-
naires. However, informal feedback from the students sug-
gested that they would have prefered to have spent more
time on the other interesting methods! They also thought
that it would have been better for them to see how require-
ments engineering fitted into the whole software process.

5 Conclusions

This paper examines the particular problems of teach-
ing formal requirements engineering. Through a number
of case studies we showed that we still have much to learn

about the best way to teach this subject. In fact, we ac-
knowledge the need to integrate different formal models
with the more successful, but less rigorous, approaches
which are currently being used in real industrial projects.
The integration of these different views is part of our cur-
rent research[13].

References

[1] J.-R. Abrial. The B Book. Cambridge University Press,
1996.

[2] R. Baber. The Spine of Software — Designing Provably Cor-
rect Software: Theory and Practice, or: A Mathematical In-
troduction To The Semantics Of Computer Programs. John
Wiley and Sons, 1987.

[3] D. Bjoener and C. B. Jones. Formal Specification and Soft-
ware Development. Prentice-Hall International, 1982.

[4] T. Bolognesi. Fundamental results in the verification of ob-
servational equivalence: a survey. In H. Rudin and W. C.H.,
editors, Protocol Specification, Testing and Verification VII.
North-Holland, 1988.

[5] T. Bolognesi and E. Brinksma. Introduction to the ISO spec-
ification language LOTOS. In The 1st International Confer-
ence on Formal Description Techniques (FORTE 88), 1988.

[6] R. Bulzer and N. Goldman. Principles of good software
specification and their implications for specification lan-
guages. In Proc. of Reliable Software, pages 58–67. Cam-
bridge, Mass., 1979.

[7] E. Cusack. Refinement, conformance and inheritance. In
Open University workshop on the theory and practice of re-
finement, 1989.

[8] R. DeNicola. Extensional equivalence for transition sys-
tems. Acta Informatica, 24:211–237, 1987.

[9] A. Diller. An Introduction To Formal Methods. John Wiley
and Sons, 1990.

[10] U. Engberg. TLP Manual-(release 2. 5a)-PRELIMINARY.
Department of Computer Science, Aarhus University, May
1994.

[11] J. Gibson. Formal Object Oriented Development of Software
Systems Using LOTOS. Thesis csm-114, Stirling University,
Aug. 1993.

[12] J. P. Gibson. Formal object based design in LOTOS. Tr-
113, University of Stirling, Computing Science Department,
Stirling, Scotland, 1994.

[13] J. P. Gibson, B. Mermet, and D. M éry. Feature interactions:
A mixed semantic model approach. In Irish Workshop on
Formal Methods, Dublin, Ireland, July 1997.

[14] J. P. Gibson, B. Mermet, and D. M éry. Specification of ser-
vices in a compositional temporal logic. Rapport de fin du
lot1 du marche no 961B CNET-CNRS CRIN, CRIN, 1997.

[15] J. P. Gibson and D. M éry. Teaching formal methods:
Lessons to be learned. In 2nd Irish Workshop on Formal
Methods, Cork, Ireland, July 1998.

[16] R. Hart, Maltas. Teaching discrete mathematics in grades 7
–12. In Mathematics Teacher, volume 83, pages 362–367,
1990.

[17] R. J. Logic in first courses for computing science majors. In
World Conference on Computers in Education, pages 467–
477, 1995.

[18] R. J. A three paradigm first course for cs majors. Pro-
ceedings of 26th ACM Tech. Symposium SIGCSE Bulletin,
27(1):223–227, 1995.

[19] R. J. A logical foundation course for cs majors. In Australian
Computer Science Education Conference, pages 135–140,
July 1996.

[20] v. d. H. G. Joosten S., van der Berg K. Teaching functional
programming to first-year students. In Journal of Functional
Programming, volume 3, pages 49–65, 1993.

[21] Lambert. Using miranda as a first programming language.
Journal of Functional Programming, 3(1):5–34, 1993.

[22] L. Lamport. A temporal logic of actions. ACM Trans. Prog.
Lang. Syst., 16(3):872–923, May 1994.

[23] G. L évy. Algorithmique Combinatoire: Mithodes Construc-
tives. DUNOD, 1994.

[24] B. Liskov and Z. S. Programming with abstract data types.
In ACM SIGPLAN Notices, number 4 in 9, pages 50–59,
1974.

[25] S. Owre, N. Shankar, and J. B. Rushby. The PVS Specifica-
tion Language. Computer Science Laboratory, SRI Interna-
tional, CA, Feb. 1993.

[26] Reeves and Goldson. The calculator project - formal reason-
ing about programs. In P. M., editor, Proceedings Software
Engineering Conference SRIG-ET, pages 166–173. IEEE
Computer Society Press, 1995.

[27] A. Wikstrom. Functional Programming Using Standard
ML. Prentice-Hall, 1987.

[28] J. Woodcock and J. Davies. Using Z Specification, Refine-
ment, and Proof. Prentice Hall International Series in Com-
puter Science. Prentice Hall, 1996.

[29] P. Zave. Feature interactions and formal specifications in
telecommunications. IEEE Computer Magazine, pages 18–
23, Aug. 1993.

