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Abstract

A profiler can provide valuable information to a
developer to facilitate program optimization, debug-
ging or testing. In this paper, we describe the use
of the Decorator pattern for non-intrusive profiling
of object-oriented applications. We provide a for-
mal specification of the Decorator pattern, and show
that the pattern can be used as a program transfor-
mation without altering the external, observable be-
havior of the system. We refer to such a transfor-
mation as a correctness preserving transformation,
or CPT. As a CPT, the Decorator pattern can be
used to non-intrusively profile object-oriented appli-
cations and we illustrate this application with an in-
variant validator for enforcement of Design by Con-
tract, and for profiling memory. We provide a case
study to compare the cost trade-offs of validating in-
variants at different points in a program.

1 Introduction

A program profile is a description of the relative
frequency of program regions or the frequency of
resource usage. Profilers take many forms and each
form can be a valuable tool that can provide useful
guidance in program optimization [9, 23], debugging
[3, 19, 28] and testing [20].

There are two approaches for implementing pro-
filers: the probabilistic approach and the instrumen-
tation approach [19]. In the probabilistic approach,
a system-level interrupt handler is periodically in-

voked and run-time state information is recorded.
The record of each interrupt is termed a sample and
the samples for the entire program execution form
the profile. In the instrumentation approach, coun-
ters are inserted into the text of the program and
these frequency counts form the profile of the pro-
gram. The disadvantage of these approaches is that
each technique perturbs the program under profile
and this perturbation can turn a correct program
into a faulty one [19].

In this paper, we describe the use of the Deco-
rator pattern for non-intrusive profiling of object-
oriented applications. We provide a formal specifi-
cation of the Decorator pattern, and show that the
pattern can be used as a program transformation
without altering the external, observable behavior of
the system. We refer to such a transformation as a
correctness preserving transformation, or CPT [16].
As a CPT, the Decorator pattern can be used to
non-intrusively profile object-oriented applications
and we illustrate this application with an invari-
ant validator for enforcement of Design by Contract
[26], and for profiling memory. We provide a case
study to compare the cost trade-offs of validating in-
variants, expressed in the object constraint language
(OCL) [7], at different points in a program.

In the next section we provide background and
review the work related to profiling programs. Sec-
tion 3 provides an overview of the Decorator pattern
and describes its use in profiling. We formalize the
Decorator pattern as a correctness preserving trans-
formation in reference [10]. In Sections 4 and 5 we
describe the use of the Decorator pattern for validat-
ing invariants and profiling memory and in Section
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6 we present the results of our case study. Finally,
in Section 8, we draw conclusions and describe our
ongoing work.

2 Background and Related Work

In this section we provide background and overview
the research that relates to program profiling and
validating invariants. Since profiling memory is a
minor part of our paper, we omit background and
related work about this topic.

2.1 Profiling programs

The advantages of profiling programs have long
been recognized for their abilities to facilitate opti-
mization, debugging and testing [23]. Fine-grained
profile descriptions are obtained by instrumenting
the program to measure execution counts of basic
blocks [5], control-flow edges [5] or paths [6] in a
program. Function profilers provide a more coarse-
grained description of the program by measuring,
for each function, the total time spent executing the
function, possibly including the time spent in its call
descendants on its behalf [1, 31, 4].

More recent research has focused on providing
more comprehensive profile information. Reference
[19] describes the computation of call path refine-
ment profiles, which provide detailed performance
information about arbitrarily nested function call
sequences, with the ability to unravel the sequences
either backward or forward in the call stack, allow-
ing the programming to detect the bottlenecks in
the code.

Reference [28] exploits profile information to com-
pare two different executions of a single program
with input data that differs only on the date. Ref-
erence [20] compares executions of a program and
a modified version of the program on the same in-
put data in an effort to uncover regression faults.
Both of these approaches use program profiling to
obtain a distribution of the profile information called
a spectrum; different spectra are compared to obtain
information about the program.

The approach to program profiling that is most
similar to ours is described in reference [11], where
the Decorator pattern is used to implement viola-
tion checking wrappers for Java components. Our
use of the Decorator pattern is similar, except that

we generalize the use of the Decorator to profiling
of class methods. Moreover, we formalize our use
of the Decorator for profiling as a correctness pre-
serving transformation that maintains the observ-
able behavior of the original program.

2.2 Invariant validation

An invariant on a class C is a set of Boolean con-
ditions or predicates that every instance of C will
satisfy after instantiation (i.e., after constructor in-
vocation) and before and after every method invo-
cation by another object [26]. A class invariant is a
property of a class instance that must be preserved
by all methods of the class. In spite of its name,
an invariant is not required to hold at all execution
points. For example, a method might violate the in-
variant while working toward its goal; however, the
invariant must be re-established before the method
terminates execution.

Reference [14] describes a non-invasive approach
for validation of class invariants in C++ applications,
where the invariants are specified using the Object
Constraint Language (OCL). The approach is fully
automated so that the user need only supply the
class invariants for each class hierarchy to be checked
and a validator constructs an InvariantVisitor, a
variation of the Visitor pattern [25], and an Invari-
antFacilitator. Instantiations of the InvariantVisi-
tor and InvariantFacilitator classes encapsulate the
invariants in C++ statements and facilitate the vali-
dation of the invariants. However, the technique in
reference [14] does not easily extend for validating
invariants at arbitrary points in a program.

3 Overview of the Technique

In this section, we overview the Decorator pattern
[12] and describe its use in profiling object-oriented
applications. The Decorator pattern is ideal for at-
taching responsibilities to objects transparently. We
apply the Decorator to profiling, enabling us to track
objects without affecting the object. Moreover, we
can withdraw the profiling, with minimal modifica-
tion to the application.

3.1 Structure of the pattern

The class diagram in Figure 1 describes the struc-
ture of the Decorator pattern [12] that we use for
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ProfilerUserClassImpl

UserClass

Figure 1. Pattern structure. This figure il-
lustrates the structure of the Decorator
pattern, as applied to program profiling.
UserClassImpl is the original user-written
class under profile, Profiler implements
the profiler, and UserClass unifies classes
UserClassImpl and Profiler.

profiling. There are three classes in the figure: User-
ClassImpl, representing the original user-written
class under profile; Profiler, the class containing
the code to perform profiling; and UserClass, a
class that unifies the class under profile and the pro-
filer. Class UserClass inherits publicly from User-
ClassImpl and contains Profiler; these relation-
ships enable the pattern to be used by object-oriented
languages that might not include multiple inheri-
tance.

To describe our approach to profiling, assume
the user intends to profile a class UserClass. We
begin by renaming UserClass to UserClassImpl,
and subclass UserClassImpl with a new class called
UserClass, which contains an instance of the class
Profiler. In the new UserClass, we overload the
functions to be profiled from the original class; in
the overloaded functions, we invoke the profiler as
well as the original member function. In the next
section, we provide an example of this approach

3.2 An example: profiling a traffic light

Figure 2 illustrates C++ code containing a names-
pace, lines 1 through 5, a class to be profiled, lines
6 through 19, and a main program, lines 20 through
25. The namespace, LightColors, contains an enu-
meration, colors, with a value for the three colors
of a traffic light: GREEN, YELLOW and RED, as well as
an array, colorNames , to facilitate printing of the

1 namespace LightColors {
2 enum colors { GREEN, YELLOW, RED, NUMBER OF COLORS };
3 const string colorNames [] =

4 { "Green", "Yellow", "Red" };
5 };

6 class TrafficLight {
7 public:
8 TrafficLight(LightColors::colors color

9 = LightColors::GREEN)

10 : color (color) { }
11 void Switch() {
12 color = static cast<LightColors::colors>(

13 (color + 1) % LightColors::NUMBER OF COLORS);

14 cout << LightColors::colorNames [color ]

15 << endl;

16 }
17 private:
18 LightColors::colors color ;

19 };

20 int main() {
21 TrafficLight light(LightColors::RED);

22 for (int i(0); i < 10; ++i) {
23 light.Switch();

24 }
25 }

Figure 2. A Traffic Light example. This figure
shows a traffic light that switches colors.
The traffic light example threads our paper.

enumeration.

The class in Figure 2, TrafficLight, contains
a data member, color , which takes on the val-
ues of the colors enumeration. TrafficLight also
contains two member functions, a constructor that
initializes color and Switch(), which changes the
value (color) of the simulated traffic light and prints
the current color. Finally, function main, lines 20
through 25 of Figure 2, instantiates the Traffic-
Light, light, and changes the light ten times.

Figure 3 illustrates our profiling of the traffic light
in Figure 2. Class TrafficLightImpl on lines 5
through 17, is the same as class TrafficLight in
Figure 2, except that it has been renamed. Traf-
ficLightImpl contains member function Switch(),
as in Figure 2; in this example, we profile the actions
of function Switch().

Class Counter, lines 18 through 28, models our
Profiler class of Figure 1; we use Counter in the
traffic light example to monitor the traffic light. Class
Counter contains an integer data member, count ,
which monitors changes to the light, and a file, log ,
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1 namespace LightColors {
2 enum colors { GREEN, YELLOW, RED, NUMBER OF COLORS };
3 const string colorNames [] = { "Green", "Yellow", "Red" };
4 };

5 class TrafficLightImpl {
6 public:
7 TrafficLightImpl(LightColors::colors color = LightColors::GREEN)

8 : color (color) {}
9 void Switch() {

10 color = static cast<LightColors::colors>( (color + 1) %

11 LightColors::NUMBER OF COLORS);

12 cout << LightColors::colorNames [color ]

13 << endl;

14 }
15 private:
16 LightColors::colors color ;

17 };

18 class Counter {
19 public:
20 Counter() : count (0), log ("light.log") { }
21 void Increment() {
22 ++count ;

23 log << count << endl;

24 }
25 private:
26 int count ;

27 ofstream log ;

28 };

29 class TrafficLight : public TrafficLightImpl,

30 private Counter {
31 public:
32 TrafficLight(LightColors::colors color)

33 : TrafficLightImpl(color) {}
34 void Switch() {
35 Increment();

36 TrafficLightImpl::Switch();

37 }
38 };

39 int main() {
40 TrafficLight light(LightColors::RED);

41 for (int i(0); i < 10; ++i) {
42 light.Switch();

43 }
44 }

Figure 3. A Profiled Traffic Light. This figure illustrates our application of the Decorator pattern to
profiling the traffic light of Figure 2. Class TrafficLightImpl on lines 5 through 17, is the same
as class TrafficLight in Figure 2, except that it has been renamed. TrafficLightImpl contains
member function Switch(), as in Figure 2; in this example, we profile the actions of function
Switch(). Class Counter, lines 18 through 28, models our Profiler class of Figure 1; we use
Counter in the traffic light example to monitor the traffic light. Function Switch(), lines 34 to 37
in TrafficLight, first profiles the traffic light by incrementing count in Counter, and then invokes
TrafficLightImpl::Switch(), to implement the functionality of the original Switch().
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which stores logged information. Counter contains
a constructor that initializes the data members and
function Increment() that might be used to moni-
tor changes to a class data attribute.

Class TrafficLight, lines 29 through 38 of Fig-
ure 3, is a new class that unifies the class under
profile, now called TrafficLightImpl, and the pro-
filer, that we call Counter in this example. Class
TrafficLight uses multiple inheritance to unify the
two classes, line 29 of Figure 3, where TrafficLight
inherits publicly from TrafficLightImpl and pri-
vately from Counter. Our use of multiple inheri-
tance in this figure is equivalent to the inheritance
and aggregation illustrated in the class diagram of
Figure 1.

Class TrafficLight has no data attributes and
two member functions, a constructor that simply
passes the initial value of the traffic light to its par-
ent class, and Switch(), which overloads the func-
tion in the parent class. Function Switch() in Traf-
ficLight first profiles the traffic light by increment-
ing count in Counter, and then invokes Traffic-
LightImpl::Switch(), to implement the function-
ality of the original Switch(). Thus, in this example
we first profile the traffic light and then execute the
original functionality.

4 Using the Decorator Pattern to Val-
idate Invariants

Class invariants are usually defined as constraints
or restrictions on the state of the objects in the class.
They are most useful when the state of an object is
composed of component objects. The object is con-
sidered to be broken, or unsafe, if the component
states do not meet the invariant property. For exam-
ple, we may define a road junction as a composition
of two traffic lights. The junction would probably
be unsafe if both lights were green at the same time,
and in such an instance the developers should spec-
ify this requirement as an invariant property.

Invariant properties that are not formally verified
introduce the possibility of run time errors in an ex-
ecution model. We promote a complementary ap-
proach to checking invariants. The engineers should
try to verify them at compile time (using formal
methods), but where this is not feasible (or practi-
cal) then the invariants that have not been verified
should be tested through some run-time validation
mechanism. There are a number of alternatives for

how this can be done (which we discuss in the case
study of Section 6). For now we show that the Dec-
orator pattern can be used for such run-time vali-
dation. For the purpose of this example, we chose
to check invariants as pre-conditions to method calls
and log any instances where invariants are broken.
This profile log does not guarantee the absence of
errors due to broken invariants but it will either in-
crease our confidence in the code being correct, or
quickly identify a broken invariant for immediate re-
pair.

We now address the validation and verification
of such invariant properties in OO ACTONE [15].
There are four parts to this problem. First, we must
consider the property language for specifying invari-
ants. Second1, we must consider how to use a the-
orem prover for the automated verification of these
properties. Third, we must consider how to validate
those invariants that we have been unable to verify
(through proof). Finally, we must consider how to
implement this validation mechanism.

4.1 Run-time validation with profiler: the spec-
ification

In this section we specify an invariant for a traf-
fic light junction, illustrated in Figure 4, and show
how it can be formulated for validation using the
Decorator pattern. Reference [10] contains a more
thorough discussion of this formulation as a correct-
ness preserving transformation.

Note that we specify an initial state and that this
satisfies the invariant property. It is easy, in this ex-
ample, to see that the invariant property is going
to be broken after the first call to Switch, lines 9
and 10, at the junction: both lights turn green. The
specification requires that this be logged by the pro-
filer. (In an implementation we would probably log
more information in order for us to identify the er-
ror.)

In this simple example, it is more than likely that
the error would be found immediately by a theo-
rem prover. However, for the sake of the exam-
ple we imagine that a tool for formal verification
is not available. Thus we are required to validate
the invariant at run-time. The Decorator pattern
facilitates immediate implementation. A Java im-
plementation of the Decorator pattern, instantiated

1It is beyond the scope of this work to examine this process
in detail: see reference [17].
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1 CLASS Junction USING TrafficLight

2 STRUCTURES A Junction(TrafficLight, TrafficLight)

3 INITIALIZE A Junction(A TrafficLight(Red),

4 A TrafficLight(Red))

5 INVARIANT A Junction(tl1,tl2) REQUIRES

6 tl1=Red or tl2 =Red

7 TRANSFORMERS Switch()

8 EQUATIONS

9 A Junction(tl1, tl2).Switch()=

10 A Junction(tl1.Switch(), tl2.Switch())

11 ENDCLASS Junction

12 CLASS Profiler USING Stream

13 STRUCTURES A Profiler(Stream)

14 TRANSFORMERS Note()

15 EQUATIONS

16 A Profiler(log).Note() =

17 A Profiler(log.add("Invariant Broken"));

18 ENDCLASS Profiler

19 CLASS ProfiledJunction EXTENDS Junction, Profiler

20 TRANSFORMERS Note HIDDEN

21 STRUCTURES A ProfiledJunction(Junction, Profiler)

22 EQUATIONS

23 j.INVARIANT() => A ProfiledJunction(j,p).Switch()

24 = A ProfiledJunction(j.Switch(),p);

25 not(j.INVARIANT()) =>

26 A ProfiledJunction(j,p).Switch()

27 = A ProfiledJunction(j.Switch(),p.Note());

28 ENDCLASS ProfiledTrafficLight

Figure 4. A Traffic Light example. This fig-
ure shows a traffic light that switches col-
ors. This example is used throughout our
paper.

by the Junction and the Profiler as specified above,
is presented in reference [10].

5 Using the Decorator Pattern to Pro-
file Memory

We now exploit the Decorator pattern to profile
memory in C++ applications. To accomplish this, we
track memory allocation and deallocation by over-
loading operators new and delete for the class under
profile. Unlike typical profiling, in memory profil-
ing we know the methods that we wish to monitor,
since they are provided by all classes, either as user-
defined or compiler generated operators. We con-
struct a generic class to profile the memory of the
parameter to the generic class by monitoring oper-
ators new and delete of the generic class.

Figure 5 summarizes an approach to profiling mem-

MemoryProfiler

T

MemoryTable

<<static>> void recordNew(void*, size_t)

<<static>> void recordDelete(void*)

<<static>> void* operator new(size_t)

<<static>> void operator delete(void*)

T

Figure 5. Profiling Memory. This figure il-
lustrates an application of the Decorator
pattern for profiling memory in C++ appli-
cations.

Test case lines classes classes
w/ fns

encrypt 946 1 1

php2cpp 1,920 6 6

fft 2,238 51 36

graphdraw 4,354 199 76

ep matrix 4,944 78 51

vkey 8,556 279 44

Figure 6. Test suite.

ory, where we illustrate overloading for the simplest
form of new and delete; the other three forms fol-
low in similar fashion. The base class in the fig-
ure, T, is the user class under profile and the generic
derived class, MemoryProfiler, is the profiled user
class. Classes T and MemoryProfiler correspond to
UserClassImpl and UserClass illustrated in Fig-
ure 1 of Section 3. The third class in Figure 5
is MemoryTable, which tracks memory, and corre-
sponds to class Profiler in Figure 1.

6 Case Study: Validating Invariants

In this section we describe the results of our study
of automated validation of class invariants, expressed
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in the object constraint language (OCL) [7]. The
target application for our study is keystone [24, 27],
a parser front-end for the ISO C++ language [21].
The validator was executed on a Sager NP5620 Lap-
top with a P4, 2.0 GHz processor, equipped with 256
MB of DDR, running the Linux operating system,
kernel version 2.4.19. Our implementation language
was C++ [30] compiled with GNU gcc version 3.2. In
the next section we describe the test suite for the
study and in Section 6.2 we compare the cost of val-
idating invariants at various points in the program.
In Section 6.3 we discuss the errors that were uncov-
ered in the application for our study, and in Section
6.4 we discuss the code coverage provided by our
test suite and the implication of coverage on invari-
ant validation. In Section 6.5 we discuss threats to
the validity of our study.

6.1 The test suite

The table in Figure 6 summarizes our suite of six
test cases, listed in the rows of the table as encrypt,
php2cpp, fft, graphdraw, ep matrix and vkey. The
test cases in the suite were chosen because of their
range and variety of application; they are listed in
sorted order by number of lines of code, not includ-
ing comments or blank lines. We note that keystone
had been previously tested using this same test suite
and was thought to run successfully.

Test case encrypt is an encryption program that
uses the Vignere algorithm [2] and the php2cpp test
case converts the PHP web publishing language to
C++ [8]. fft performs fast Fourier transforms [22]
and graphdraw is a drawing application that uses IV
Tools [32], a suite of free XWindows drawing editors
for Postscript, TeX and web graphics production.
The ep matrix test case is an extended precision ma-
trix application that uses NTL, a high performance
portable C++ number theory library [29]. vkey is a
GUI application that uses the V GUI library [33],
a multi-platform C++ graphical interface framework
to facilitate construction of GUI applications.

The columns of the table in Figure 6 list details
about the number of lines of code, not including
comments or blank lines, the number of classes, and
the number of classes with functions for each of the
test cases. All of the test cases are complete appli-
cations and three use large libraries: ep matrix, vkey
and graphdraw use the NTL, V GUI and IV Tools
libraries respectively.

Test case ATT EOM EOP NONE

encrypt 73.30 6.76 1.27 1.27

php2cpp 79.13 7.74 2.18 1.92

fft 120.30 13.33 3.72 3.22

graphdraw 875.40 33.26 6.69 6.66

ep matrix 863.50 98.07 47.58 46.6

vkey 316.70 44.44 21.54 21.48

Figure 7. Efficiency.

6.2 Efficiency

In this section, we evaluate the performance of
invariant validation at different points in the pro-
gram. In particular, we use the Decorator pattern
to profile invariant validation: (1) at the end of con-
structor execution, at the beginning of destructor
execution and at the beginning and at the end of
all methods, which we refer to as “All The Time”,
or ATT; (2) at the end of mutator methods, which
we refer to as “End Of Mutator”, or EOM; finally,
(3) we compare our results for EOM and ATT with
the approach of reference [14], where invariants are
validated only at the end of the program, EOP.

Figure 7 contains a table, listing execution times
for the various approaches, as well as a graph sum-
marizing the results. There are five columns in the
table. The first column lists the test cases, the sec-
ond column lists results for ATT, the third column
lists results for EOM, the fourth column lists results
for EOP, and the final column lists execution times
for the test case with no invariant validation, shown
as NONE. For example, consider the first row of
the table, showing results for the encrypt test case,
where 73.30 seconds were required to validate in-
variants ATT, 6.76 seconds were required to vali-
date invariants EOM, 1.27 seconds were required to
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validate invariants at EOP, and 1.27 seconds were
required to parse encrypt without invariant valida-
tion.

The graph in Figure 7 summarizes our results for
each test case. There are three sets of bars for each
test case. The first bar of each set summarizes re-
sults for ATT, the second bar for EOM and the third
bar for EOP. The first two sets of bars are drawn to
scale, but the final four sets of bars abbreviate the
results for ATT since, drawn to scale, the ATT bar
would dwarf the other two bars.

The results in Figure 7 show that validating in-
variants ATT generally requires an order of magni-
tude longer than validating at EOM. Moreover, the
time to validate invariants at EOM is usually more
than double the time to validate only at EOP.

6.3 Impact of validation on keystone

We have chosen, for our case study, keystone,
a parser front-end for the ISO C++ language [24,
27]. As an application, keystone instantiates ob-
jects representing name declarations, type declara-
tions or scopes for the program under parse. These
objects, once instantiated, remain viable until pro-
gram termination; lookup is the typical operation
on these objects, with updates performed less fre-
quently. However, all of these objects remain until
program termination.

Given the nature of our case study, we partition
the errors exposed by invariant validation into three
categories: (1) temporary errors, (2) mismatch er-
rors, and, (3) implementation errors. Temporary er-
rors result from names declared in the program un-
der parse, but not yet defined. For example, some
scope objects, such as a forward class declaration,
are declared but defined later; thus, none of the val-
ues for the data attributes are available when the
class object is constructed. Therefore, fields that are
specified by an invariant to never be NULL, must be
set to NULL temporarily, until the actual class dec-
laration is encountered in the program.

Another example of a temporary error results from
a name declaration that is instantiated to facilitate
name lookup, but the declaration of the name has
not yet been encountered; for example, a class data
attribute may be initialized for a class before the
declaration of the attribute is encountered. This
type of error has prompted us to investigate the no-
tion of temporal invariants, or invariants that are

eventually valid [13]. We uncovered many tempo-
rary errors during invariant validation of keystone;
all of these errors eventually, as the test case contin-
ues to be parsed, either fall into the second or third
category of errors, or become valid.

The second category of errors, uncovered by in-
variant validation, are mismatch errors, which ex-
pose a discrepancy between the specification and the
implementation. We uncovered 5 mismatch errors,
the same number reported in reference [14]. The
third category, implementation errors, represent er-
rors in the code that were not exposed by testing.

6.4 Code coverage

Our approach to invariant validation is a dynamic
activity and is therefore dependent on the coverage
provided by our suite of test cases. To illustrate
the importance of coverage, consider that the ISO
C++ standard specifies that only labels have function
scope. Thus, if none of the test cases in the test-
suite have labels, then invariants defined on function
scope will not be validated. Using the gcov utility,
provided by gcc, the test suite listed in Figure 6
covered 92.2% of the statements in the keystone ap-
plication. Moreover, 100% of the invariants were
exercised one or more times during execution of the
testsuite.

6.5 Threats to validity

There are threats to the validity of our case study,
posed by the monotonic nature of the keystone ap-
plication. In particular, the objects that we validate
in keystone, once instantiated, are not destroyed un-
til program termination. We have shown in Section
6.3 that we were unable to uncover additional errors
by exercising the invariants more often than simply
at program termination. However, in an applica-
tion where objects are frequently created and de-
stroyed during program execution, it is possible that
only a small percentage of the objects will remain
at program termination. For such an application,
invariants might require more frequent validation,
for example at termination of mutator functions or,
perhaps, all of the time.

Moreover, the objects in the keystone application
may have temporary state while in flux, but once the
data attributes are set, remain stable. With objects
whose state fluctuates, it is possible that invariants
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may be, at first, valid, but may then become invalid
even across method invocation, and then become
valid again. The invalid state will not be recognized
if invariants are only validated upon program termi-
nation.

7 Implementation Difficulty

In this section, we overview two difficulties that
we encountered during the implementation of the
profiler. While our implementation language is C++

[30], the problems also occur in Java [18]. The first
difficulty concerns run-time type information and
the second difficulty concerns name hiding.

For the first difficulty, consider Figure 1, contain-
ing classes UserClassImpl, Profiler, and User-
Class, described in Section 3.1. Our technique is
designed so that a programmer may use either User-
ClassImpl or UserClass transparently. For most
classes, this can be achieved by having UserClass
simply forward function calls up to it’s parent class
(UserClassImpl). However, consider a class hierar-
chy that permits a polymorphic copy via a Clone
method.

1 class XBase {
2 public:
3 virtual XBase * Clone() const = 0;

4 };
5 class XImpl : public XBase {
6 public:
7 XBase * Clone() const {
8 return new XImpl(*this);

9 }
10 };

A naive implementation of X would simply call
XImpl::Clone() and return its value. However, a
run-time type query on the object will return incor-
rect information, such as dynamic cast in C++ and
the instanceof operator in Java. For example, the
type of the object returned by XImpl::Clone is an
XImpl, but the user of the class should not have any
knowledge of XImpl, rather just X and would expect
that to be the type of the object. We could rewrite
the body of XImpl::Clone in the declaration of X to
make sure the object type is correct, but keeping du-
plicate copies of code may introduce a maintenance
problem. Thus, we describe a technique that creates
an object of type X, while maintaining the behavior
of XImpl.

1 class X : public XImpl, private XProf {
2 public:
3 X(const XImpl & x) : XImpl(x) { }
4 XBase * Clone() const {
5 XProf::Profile();

6 XBase * x = XImpl::Clone();

7 XBase * newX =

8 new X(*dynamic cast<XImpl*>(x));

9 delete x;

10 return newX;

11 }
12 };

Line 3 in the figure above states that the class
X can be created by copying its base class, XImpl,
and nothing else. Line 6 executes the code for this
method in the base class, and returns a pointer to
an object whose dynamic type is XImpl. Lines 7
& 8 create a new object of type X, which is a copy
of the object created from the previous statement.
The pointer must be cast to the same type as the
object before it is dereferenced to ensure that the
correct constructor is called.

The second problem results from function over-
loading. Consider a class XImpl, with a method
f() that is overloaded to accept either an int or
a string parameter. X must provide implementa-
tions of f() for both int and string2. If only one
implementation for f() is provided in X, then the
other implementation is hidden in the derived class.

8 Conclusions and Future Work

We have described our use of the Decorator pat-
tern to profile object-oriented applications. The pat-
tern is formalized as a correctness preserving trans-
formation to permit non-intrusive profiling, without
perturbing the original program. Our case study
compares invariant validation at various points in a
program. The incremental nature of our case study
application causes the invariants to be invalid ini-
tially, but as execution of the application progresses
the invariants eventually become valid. This pro-
gression from invalid to valid has prompted us to
investigate the notion of temporal invariants that
are always, eventually or never true [13].

Our ongoing work includes extending the invari-
ant validation to other types of applications where
objects in the program are more volatile. Moreover,
we are constructing a case study to apply the Dec-
orator pattern to profiling memory in C++ applica-
tions.

2See name hiding in reference [30], or reference [18].
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