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Abstract

In this paper, we present a taxonomy that allows the
maintainer to catalog OO classes based on the characteris-
tics of the class. The characteristics of a class include the
properties of data items and methods, as well as the rela-
tionships with other classes in the application. We construct
a tool to track changes across multiple releases of software
applications containing hundreds of classes, providing in-
formation about each changed class. Our tool identifies
class changes in terms of the characteristics exhibited by
classes with the same name in different releases of an ap-
plication.

1. Introduction

It is widely acknowledged that software maintenance oc-
cupies a large fraction of the software development cycle
[2, 24], where maintenance includes modifying, extending,
debugging, testing, and documenting the application. Wilde
et al. identify several factors that affect the maintenance ef-
fort in OO software; these include: high-level system under-
standing, locating system functionality, and detailed code
understanding [24]. In addition to the difficulties associ-
ated with code comprehension in pre-OO software, the OO
paradigm has presented new challenges such as understand-
ing class hierarchies, polymorphism, and other complex de-
pendencies between entities in an OO program [24].

Several class abstraction methods are used during the
maintenance process to assist in understanding the source
code of an application. These include graphical languages,
such as the Unified Modeling Language, or UML [20] and
OO design metrics (OODMs) [6]. UML contains a plethora
of graphs and diagrams for visualizing, specifying, and de-
signing artifacts of a software intensive system, including
the class diagram used to represent relationships between
OO classes. OODMs generated from software applications
are used mainly to determine or measure the quality of a

software application [6].

The problem with class diagrams is that for applications
with more than twenty classes the diagrams become clut-
tered, difficult to interpret and ineffective [14]. The typical
maintenance activity includes hundreds or even thousands
of classes making class diagrams ineffective. Comparing
OODMs for two applications identifies changes at a more
abstract level than class diagrams, for example identifying
the number of public methods added to a class. OODMs
are more suited to providing information on qualities of
software, such as, reusability, maintainability and testability
[6].

In this paper, we provide an alternative representation
to facilitate software maintenance. We present a taxonomy
that allows the maintainer to catalog OO classes based on
the characteristics of the class. The characteristics of a class
include the properties of data items and methods, as well as
the relationships with other classes. Using our taxonomy
tool we track changes across multiple releases of applica-
tions containing hundreds of classes.

Unlike previous approaches that capture information
about the control structure of methods in a class [10, 19],
our taxonomy allows us to construct a summary of the char-
acteristics of the class. Our approach also differs from the
information provided by tools such as JavaDocs [1] and
WinCV (for MS.Net) [18] since we perform analysis on the
code while summarizing the characteristics of the class. For
example, we flatten inheritance hierarchies to accurately
capture the characteristics visible in a derived class.

In the next section, we identify class characteristics, in-
troduce class changes during maintenance and define the
term taxonomy. In Section 3 we present our taxonomy and
in Section 4 overview our taxonomy tool providing a sim-
ple example. In Section 5 we describe the results of our case
study. In the penultimate section we compare our work to
previous research and in the last section state some conclud-
ing remarks.
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2. Background

The widespread use of the OO paradigm to develop soft-
ware has resulted in new challenges during software main-
tenance. One such challenge is tracking changes to classes
during the maintenance of OO software. In this section
we identify the characteristics of a class, briefly describe
how changes are used during maintenance, and introduce
the concept of a taxonomy.

2.1. Class Characteristics

Meyer defines a class as a static entity that represents
an abstract data type with a partial or total implementation
[15]. The static description supplied by a class should in-
clude a specification of the features that each object will
contain. These features fall into two categories: (1) at-
tributes, and (2) routines. Attributes are referred to as data
items and instance variables in other OO languages while
routines are referred to as member functions and methods.
Throughout this paper we will use the terms attributes and
routines.

We define the characteristics for a given class C as the
properties of the features in C and the relationships C has
with other classes in the implementation. The properties of
the features in C describe how criteria such as types, acces-
sibility, shared class data, deferred features, dynamic bind-
ing, polymorphism, exception handling, and concurrency
are represented in the attributes and routines of C [15]. The
relationships between C and other classes include associa-
tions, dependencies, and generalizations. We define these
relationships based on the definitions given by Rumbaugh
et al. [20].

2.2. Class Changes During Maintenance

Recent research in the area of software maintenance
has focussed on the problems of change impact analysis
[10, 11] and regression testing [7, 19]. Both of these areas
of research deal with identifying changes made to existing
software. Change impact analysis (CIA) focuses on how
a change in the implementation will affect the semantics of
the software system [21]. The results from CIA can be valu-
able in predicting the risk and cost associated with the pro-
posed software changes [11]. Most of the current research
in regression testing deals with selective retest techniques
[19]. The objective of selective retest techniques is to re-
duce the cost of regression testing by reusing appropriate
test cases to test the modified code [19].

Identifying changes in OO software systems is challeng-
ing because of the complex dependencies that exist between
program entities. Change identification for classes is further
compounded by the class characteristics mentioned in the

previous section. Researchers have developed novel ways
to represent and report these changes at various levels of
granularity [10, 19]. One approach not yet fully exploited
in the literature is the identification of changes based on a
taxonomy of OO classes.

2.3. Taxonomy

A taxonomy is a scientific method of classification ac-
cording to an established system in a specific domain, with
the resulting catalog used to provide a framework for analy-
sis. Any taxonomy should take into account the importance
of separating elements of a group (taxon) into subgroups
(taxa) that are mutually exclusive, unambiguous, and taken
together include all possibilities[23].

3. Taxonomy of OO Classes

In this section we describe a taxonomy that allows the
maintainer to catalog a class, written in virtually any OO
language, based on the characteristics of that class. Us-
ing the cataloged entries for the same class in different ver-
sions of a software application the maintainer can identify
changes based on the characteristics of the class (see Sec-
tion 2.1). We use the terms taxonomy entry to describe the
result of cataloging a class using the taxonomy, and compo-
nent entry to refer to the string that represents the group or
subgroup in each component of the taxonomy.

Each class cataloged using our taxonomy consists of
three components: (1) Class - identifies the fully qualified
name of the class, (2) Nomenclature - identifies the group
(or taxon) the class belongs to, and (3) Feature Properties -
a list of sub-groups categorizing the attributes and routines
of the class. We use a string of descriptors in the Nomen-
clature and Feature Properties components to describe the
characteristics exhibited by a given class. To describe a
class written in virtually any OO language the descriptors
are divided into two groups: (1) core - identifies character-
istics found in most OO languages, and (2) add-ons - de-
scriptors specific to a language.

The taxonomy presented in this paper is an extension to
the taxonomy in [3]. We made the following changes to
more accurately summarize the characteristics of a given
class. We extended the nomenclature component to include
generic classes and classes whose instances are concurrent
objects. In [3], the Feature Properties component only listed
categories of types, however, the component entries now
include descriptors that reflect the characteristics of the fea-
tures in the class. The categories of types are also extended
and renamed. In addition, we also precede each compo-
nent entry in the Feature Properties with a number in square
brackets that indicates how many features in the class are in
that subgroup.
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Figure 1. Tree representing structure of Nomenclature for OO classes. We consider the descriptors
in italics as defaults and therefore not stated in the Nomenclature. The type families are enclosed
in braces representing all possible combinations, of which one is chosen. Vertical ellipses implies
repetition of the tree structure. The type families for Generic classes include families A and A*,
representing the unknown parameters in the generic classes

3.1. Nomenclature

The Nomenclature of a class identifies the group (or
taxon) the class belongs to, as well as provides a summary
of class properties and relationships with other classes in
the application. The Nomenclature consists of two parts:
(1) Modifier - summarizes class properties and relationships
the class has with other classes, (2) Type Family - identifies
the types associated with the class. The following core de-
scriptors are used in the Modifier part of the Nomenclature.

� Generic - identifies a class that takes formal generic
parameters representing arbitrary types. Non-Genenic
if the class does not take formal parameters.

� Concurrent - identifies a class whose instances are
threads/processes. Sequential if the class instance does
not contain threads or processes.

� Inheritance-free - indicates a class is not part of an in-
heritance hierarchy.

� Parent - identifies a class that is the root class of an
inheritance hierarchy.

� External Child - identifies a class that is a descendant
of a parent and has no descendant classes.

� Internal Child - identifies a class that is a descendant
as well as a parent.

� Abstract - identifies a class that contains deferred fea-
tures. Concrete if the class has no deferred features.

Some of the add-on descriptors for the C++ language in-
clude Nested, Multi-Parents, Friend, and Has Friend.

The Type Family part of the Nomenclature represents a
summary of the types associated with the class. These types
are used in the declarations of attributes and routine locals
(parameters and variables). The type families used in the
taxonomy are:

� Family NA - no associated types used.

� Family P - scalar primitive types e.g., int.

� Family P* - non-scalar primitive types, including ref-
erence types and arrays of primitive types.

� Family U - user-defined types i.e., classes.

� Family U* - references to user-defined types.

� Family L - class libraries, e.g., STL[9].

� Family L* - references to class libraries.

� Family A - any type (used as parameters for generics).

� Family A* - references to any type.

The Type Family also indirectly identifies relationships
with other categories of classes including composition, ag-
gregation, and parameterization. For example, if an at-
tribute in a class is a user defined type (i.e., U) then compo-
sition exists.

Figure 1 illustrates how the descriptors and type fam-
ilies are combined in the Nomenclature component. In
addition, Figure 1 shows how our taxonomy catalogs OO
classes into mutually exclusive groups (or taxa). An exam-
ple of one such group is Non-Generic Sequential Concrete
Inheritance-Free Families P, shown along the top branch
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of the tree in Figure 1. Since we consider the descriptors
Non-Generic, Sequential, and Concrete, as defaults descrip-
tors, the Nomenclature becomes Inheritance-Free Families
P. This group represents classes that are not part of an in-
heritance hierarchy and contain data (attributes and routine
locals) whose types are primitive. The default descriptors
are italicized in Figure 1.

We add the default descriptors so that each class is cata-
loged into only one group, ensuring that groups of the tax-
onomy are mutually exclusive. For example, a class can
either be Generic or Non-Generic, see Figure 1. Each level
of the tree partitions classes into mutualyl exclusive groups.
There are no default descriptors for levels of the tree in Fig-
ure 1 with more than two categories, for example the de-
scriptors that summarize the inheritance relationships. The
inheritance descriptors are Inheritance-free, Parent, Exter-
nal Child, and Internal Child. Another example of a level
in the tree with more than two categories is the set used to
describe the type families.

3.2. Feature Properties

The Feature Properties component of the taxonomy con-
sists of three sections: (1) Attributes - a list of subgroups
categorizing the attributes, (2) Routines - a list of subgroups
categorizing the routines, and (3) Feature Classification -
a summary of the inherited features. The properties of the
attributes for a class are described using the following de-
scriptors.

� Concurrent - if the object is a thread or process.

� Polymorphic - if the attribute has the potential to be
polymorphic. That is, the attribute is a reference to
a user defined type (U*), and the user defined type
(class) has children.

� Private, Protected or Public - depending on the acces-
sibility of the attribute.

� Static - if the attribute is shared class data.

� Family NA - represents no class attributes.

� Family P, or Family P*, . . . Family A* - represents the
type family of the attribute.

� Family m<n> - represents attributes that are instanti-
ated generic types, where m is type family U or L, and
n represents any of the type families.

The properties of a routine in the class are described as
follows:

� Concurrent - represents a routine that instantiates a
thread or process.

� Synchronized - if the routine contains code that is syn-
chronized.

� Exception-R - if the routine contains code that raises
an exception.

� Exception-H - if the routine contains code that handles
an exception.

� Has-Polymorphic - if the routine contains a reference
that is potentially polymorphic.

� Non-Virtual - identifies a routine that is statically
bound.

� Virtual - identifies a routine that is dynamically bound.

� Deferred - if the implementation of the routine is de-
ferred.

� Private, Protected or Public - depending on the acces-
sibility of the routine.

� Static - if the routine is a shared class routine.

� Type family information for parameters and local vari-
ables.

We classify the inherited features of a class as outlined
in [8]: new - if the feature is declared in the child class,
recursive - if the feature is inherited from the parent un-
changed, and redefined - if the feature is a routine and has
the same signature as the one declared in the parent but with
a different implementation. The component entries in the
Attributes and Routines sections of the taxonomy are clas-
sified as either new, recursive or redefined as appropriate. In
the Feature Classification section we use None if the class is
Inheritance-free and Unknown if the class is inherited from
a class in the standard library.

Each component entry in the Feature Properties compo-
nent of the taxonomy is prefixed with a numerical value en-
closed in square brackets representing the number of times
that category of feature occurred in the class. The add-on
descriptors used in the Attributes and Routines sections are
enclosed in parentheses, one such add-on for C++ in the
Routines section is Constant.

3.3. An Illustrative Example

In this section we present an example to illustrate our ap-
proach toward cataloging classes using our taxonomy. The
example in Figure 2 illustrates C++ code for classes Point,
ClosedShape and Circle. Figure 3 illustrates the class Cir-
cle cataloged using our taxonomy.

In Figure 3, the nomenclature of class Circle is Exter-
nal Child Families P U* since class Circle is inherited from
ClosedShape, has no descendents, and the only type fam-
ilies are primitive and pointers to user-defined (see Figure
2). The Attributes section summarizes those attributes vis-
ible in the scope of class Circle; these are radius, line 24
Figure 2, a primitive type, and the inherited attribute center
a pointer to Point, line 12 Figure 2, a user-defined type.
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1 class Pointf
2 protected:
3 int x, y;
4 public:
5 Point(): x(0), y(0)fg
6 Point(int inX, int inY): x(inX), y(inY)fg
7 Point(Point & p):x(p.x),y(p.y)fg
8 void print()f...g
9 g;

10 class ClosedShapef
11 protected:
12 Point * center;
13 public:
14 ClosedShape()fcenter = new Point(0,0);g
15 ClosedShape(Point * p)fcenter = new Point(*p);g
16 ˜ClosedShape()fdelete center;g
17 Point getCenter()f
18 return *center;
19 g
20 virtual double perimeter()=0;
21 g;

22 class Circle:public ClosedShapef
23 private:
24 double radius;
25 public:
26 Circle():ClosedShape(),radius(0.0)fg
27 Circle(Point * p, int inradius):
28 ClosedShape(p),radius(inradius)fg
29 ˜Circle()fg
30 void print() const fg
31 double perimeter()f
32 return 2*pi*radius;
33 g
34 g;

Figure 2. C++ code for classes Point, Closed-
Shape and Circle. Class Circle is inherited
from class ClosedShape.

The Routines section captures the information for the
routines defined within Circle and those inherited from
ClosedShape. For example, ˜Circle(), line 29 Figure
2, is cataloged as New Non-Virtual Public Family NA and
perimeter(), line 29 Figure 2, as Redefine Virtual Public
Family NA, while the routine getCenter(), line 17, is inher-
ited from ClosedShape unchanged, and cataloged as Re-
cursive Non-Virtual Public Family NA. The descriptor Vir-
tual implies the routine is dynamically bound, while Non-
Virtual implies static binding. The above component entries
are Family NA since none of the routines declare any param-
eters or local variables. The print() routine, line 30 Figure 2,
is cataloged with the property Constant in parentheses since
this is a feature peculiar to the language C++. The Feature
Classification component identifies the features that are in-
herited from the class ClosedShape. For example, the rou-
tine perimeter() in the class Circle is cataloged as Rede-
fined Virtual Routine since it is declared as pure virtual in
ClosedShape and implemented in class Circle. The com-
ponent entry [4] New Non-Virtual Routine refers to the two
constructors, destructor, and the print() routine.

[1]  New (Constant) Non−Virtual Public Family NA

[1]  New Non−Virtual Public Families P U*

{ Circle(Point * p, int inradius) }

[1]  Recursive Non−Virtual Public Family NA

{ ClosedShape::getCenter() }

{ print() }

{ Circle(), ~Circle() }

[1]  Redefine Virtual Public Family NA  

{ ClosedShape::perimeter() }

Feature Classification:

[1]  New Attribute

[1]  Recursive Attribute

[4]  New Non−Virtual Routine

[1]  Recursive Non−Virtual Routine

[1]  Redefined Virtual Routine

[1]  Recursive Protected Family U*

Nomenclature:

Feature Properties

Attributes:

Class: Circle

External Child Families P U*

[1]  New Private Family P 

Routines:

[2]  New Non−Virtual Public Family NA

{ radius }

{ ClosedShape::center }

Figure 3. Class Circle cataloged using the
taxonomy of OO classes. Each numbered
component entry in the Attributes, Routines
and Feature Classification components rep-
resents the number of features with the same
characteristics. The entities braces represent
the features in class Circle that belongs to that
subgroup.

4. Taxonomy Tool

Our taxonomy tool, referred to as TaxTOOL - A Taxon-
omy Tool for an Object Oriented Language, reverse engi-
neers classes of a C++ software application and catalogs
them using our taxonomy. TaxTOOL also has the ability
to compare two versions of a C++ application and iden-
tify those entities that have changed with respect to the
class characteristics captured by the taxonomy. Figure 4
is a UML class diagram that illustrates the important sub-
systems of TaxTOOL. The next section describes Clouseau
[14], an API that facilitates symbol table inspection in Key-
stone [17], a parser for C++. Section 4.2 describes the pro-
cess of cataloging C++ classes and how changes in different
versions of the software are captured.
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<<subsystem>>

Tax_AllFuns

Tax_Entries

Tax_AllAttrs

Tax_Repository

<<subsystem>>

Tax_Comparator

Clouseau_API

<<subsystem>>

<<subsystem>>

Tax_Cataloger

<<queries>> <<updates>>

<<invokes>>

<<accesses>>

Figure 4. Class diagram for TaxTOOL - A Tax-
onomy Tool for an Object Oriented Language.
This class diagram highlights the major sub-
systems of TaxTOOL

4.1. The Clouseau API

The Clouseau1 application programmers interface (API),
was designed to facilitate symbol table inspection of C++
programs [14, 17]. Clouseau provides information about the
accessibility, visibility, and types of namespaces, classes,
functions, and variables for the program under considera-
tion. With Clouseau, the application programmer is com-
pletely separated from the complexity of parsing. The Clou-
seau API forms a facade for the Keystone parser [13, 16, 17],
so that users can access its functionality without the burden
of dealing with its complexity[5]. Clouseau users are re-
lieved of the burden of parsing the program, since the API
exploits the Keystone parser to provide this functionality.
Clouseau is implemented as a UnixTM shared object.

4.2. Comparison of Classes

Tax Cataloger uses the Clouseau API to access the in-
formation stored in Keystone’s symbol table for each class
definition in the C++ applications supplied to the Tax-
TOOL. The information provided by Clouseau is used to
catalog each class recursively, starting with classes defined
in the Global Namespace followed by nested class defi-
nitions and finally classes defined in routines. After all

1The Clouseau API is named after Inspector Clouseau, a character in
the Pink Panther movies, because the API permits users to “inspect” sym-
bol table information.

the classes have been cataloged Tax Cataloger then invokes
Tax Comparator to compare the classes in the applications.

Tax Repository stores a taxonomy entry for each class
cataloged using our taxonomy in the package Tax Entries.
Each taxonomy entry contains a fully qualified class name,
Nomenclature, and subgroups representing the features of
the class. It is essential that we flatten all inheritance hier-
archies to accurately catalog inherited features, as a result
we store the properties for all attributes and routines in the
Tax AllAttrs and Tax AllFuns packages respectively.

The Tax Comparator subsystem uses the information
stored in Tax Repository subsystem to compare the appli-
cations at two levels of granularity. The information in
Tax Entries allows applications to be compared at the more
abstract level, identifying changes in the Nomenclature and
Feature Properties components of the taxonomy. Changes
identified at this level include relationships between classes
e.g., classes becoming part of an inheritance hierarchy, or
classes having associations with new type families. Other
changes at this level include new or deleted subgroups for
attributes and routines. At the finer level of granularity
changes are identified using the information stored in the
Tax AllAttrs and Tax AllFuns packages. These changes in-
clude identifying new or deleted features and changes in the
properties of specific features. In the next section we will
illustrate examples of the changes TaxTOOL identifies.

4.3. Example of Class Changes

Figure 5 illustrates a modified version of the code shown
in Figure 2. The textual changes to the code in Figure 2
include: the conversion of the function print() in class Point
from non-virtual to virtual (line 8 of Figures 2 and 5), the
conversion of the destructor in class ClosedShape from
non-virtual to virtual (line 16 of Figure 2 and line 18 of
Figure 5), and the addition of the class Polar (line 10 of
Figure 5) derived from class Point.

Figure 6 is the output generated by TaxTool identifying
the changes to the code based on our taxonomy and is di-
vided into 5 partitions. Partition 1 of Figure 6 identifies the
classes found in both versions of the program and Partition
2 the new classes. Partition 3 lists those classes common to
both versions of the program but with a different nomencla-
ture. Class Point has changed from Inheritance-free Fam-
ilies P U* to Parent Families P U*, as a result of the new
class Polar being derived from Point. The addition of class
Polar also affects the attributes in class ClosedShape and
Circle, see Partition 4 of Figure 6. The attribute center
in ClosedShape now has the potential to be polymorphic
hence the descriptor Polymorphic is added to component
entry for the Attribute. The attribute center is inherited in
Circle, as a result this change is also inherited.

Partition 5 of Figure 6 identifies changes to the entries in
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1 class Pointf
2 protected:
3 int x, y;
4 public:
5 Point(): x(0), y(0)fg
6 Point(int inX, int inY): x(inX), y(inY)fg
7 Point(Point & p):x(p.x),y(p.y)fg
8 virtual void print()f...g
9 g;

10 class Polar: public Pointf
11 void print()f...g
12 g;

13 class ClosedShapef
14 protected:
15 Point * center;
16 public:
17 ClosedShape()fcenter = new Point(0,0);g
18 ClosedShape(Point * p)fcenter = new Point(*p);g
19 virtual ˜ClosedShape()fdelete center;g
20 Point getCenter()f
21 return *center;
22 g
23 virtual double perimeter()=0;
24 g;

25 class Circle:public ClosedShapef
26 // same as previous definition
27 g;

Figure 5. Modified code for classes Point, Polar
and ClosedShape.

the Routines component of our taxonomy for the two ver-
sions of the program. The component entry for the one-
argument constructor of class Point now includes the de-
scriptor Has Polymorphic, reflecting that references of type
Point are potentially polymorphic. Similar changes are
also generated for the one-argument constructor of Closed-
Shape (line 15 Figure 2), and the two-argument constructor
of class Circle (line 27 Figure 2). The remaining changes
of Partition 5 in Figure 6 represent functions that have be-
come virtual. These functions include print in class Point,
the destructor in ClosedShape, and the destructor in Cir-
cle derived from ClosedShape.

5. A Case Study

In this section, we describe our application suite and the
results obtained when various releases of a library are com-
pared using TaxTOOL. In the next subsection we overview
the application suite and experimental conditions used in
the case study. In subsection 5.2 we present a summary of
the changes identified by our tool. Due to space restrictions
we only present a summary of the changes identified by our
tool in the last subsection. A brief discussion on how our
results were validated, as well as limitations of our current
version of TaxTOOL are presented in Subsection 5.3.

From: Non−Virtual Public Family U*
To: Has_Polymorphic Non−Virtual Public Family U*
Function Name: print
From: Non−Virtual Public Family NA
To: Virtual Public Family NA

**** Class Name: ClosedShape ****
Function Name: ClosedShape
From: Non−Virtual Public Family U*
To: Has_Polymorphic Non−Virtual Public Family U*
Function Name: ~ClosedShape
From: Non−Virtual Public Family NA
To: Virtual Public Family NA

**** Class Name: Circle ****
Function Name: Circle
From: Non−Virtual Public Family P U*
To: Has_Polymorphic Non−Virtual Public Families P, U*
Function Name: ~Circle
From: Non−Virtual Public Family NA
To: Virtual Public Family NA

Point, ClosedShape, Circle

Function Name: Point

To: Parent Families P U*
From: Inheritance−free Families P U*

**** Class Name: Point ****

3. CLASS(ES) WITH DIFFERENT NOMENCLATURE:

Polar

2. ADDED CLASS(ES):

1. CLASS(ES) FOUND:

4. CHANGED ATTRIBUTE(S)

**** Class Name: ClosedShape ****
Attribute Name: center
Type Name: Point
From: Protected Family U* 
To: Polymorphic Protected Family U*

**** Class Name: Circle ****
Attribute Name: ClosedShape::center
Type Name: Point
From: Recursive Protected Family U* 
To: Recursive Polymorphic Protected Family U*

5. CHANGED FUNCTION(S)

**** Class Name: Point ****

Figure 6. Changes generated by TaxTOOL for
classes Point, ClosedShape and Circle, see
Figures 2 and 5

5.1. Software Applications

Table 1 summarizes our test suite including three re-
leases of the library graphdraw[22], a drawing application
that uses IV Tools, a suite of free X Windows drawing edi-
tors for PostScript, TeX and web graphics production. We
emphasize that the three applications remained constant for
the experiments; only the libraries changed across the dif-
ferent releases.

The first column of Table 1 lists the number that we asso-
ciate with each test case, the second column lists the name
of the application that uses the respective libraries and the
third column lists the release number of the library. For ex-
ample, test cases 1 through 3 show the graphdraw applica-
tion that uses releases 0.7, 1.0.0 and 1.0.1 of the IV Tools li-
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Test Application Library Release No. Lines No. Classes Classes with
Case No. Release Date Routines

1 graphdraw IV Tools 0.7 Dec. 1998 3575 156 63
2 graphdraw IV Tools 1.0.0 Nov. 2001 4356 170 65
3 graphdraw IV Tools 1.0.1 Jan. 2002 4354 170 65

Table 1. Summary of the test cases used in the case study

Figure 7. Graphical illustration representing changes in the applications using the various libraries.

brary. The fourth column in the table lists the release date of
the library and the fifth column lists the number of lines for
each application, with blank lines and comments removed.
The final columns in Table 1 list the total number of classes
and the number of classes with routines, or functions, for
each of the test cases. For example, test case 1 contains 156
classes, but only 63 classes contain routines. Our taxonomy
tool does not distinguish between classes and structs since
in C++ the only difference is the default accessibility. It
should be noted that we use a flag in TaxTOOL to exclude
system libraries such as the X11 system library, without this
flag there would be an additional 28 classes to consider.

Table 1 shows that there is little difference between test
cases 2 and 3, since they both have the same number of
classes, and the same number of routines. Moreover, the
number of lines in the two test cases only differs by two.
The two releases were two months apart, so it is likely that
there was little time for modifications to the two libraries.

The experiments in this section were executed on sys-
tems running version 7.1 of Red Hat and Solaris SunOS ver-
sion 5.8. To provide some insight into the efficiency of our
taxonomy tool, we were able to compare the graphdraw ap-
plication that uses release 1.0.0 and 1.0.1 of the IV Tools li-
brary in 19.74 seconds on a Dell Precision 530 workstation,
with a Xeon 1.7 GHz processor and 512 MB of RDRAM,
running the Red Hat 7.1 operating system.

5.2. Summary of Changes

One contribution of our taxonomy is to enable the main-
tainer of a system to abstract the important characteristics
of a class. TaxTOOL allows us to track the changes in
these characteristics across multiple releases of an applica-
tion or library. The graph in Figure 7 shows a summary
of the results in comparing these releases. The x-axis rep-
resents the changed entities i.e., Nomenclature, Attributes,
Routines and Feature Classification components of the tax-
onomy, and New/Deleted classes. The y-axis represents the
number of changed classes. Space restrictions limit us from
providing details of these changes as illustrated in Figure 6.

To illustrate the impact of the information in Figure 7,
consider the leftmost bar of each group representing infor-
mation about the comparison of test cases 1 and 2. The two
changes in the Nomenclature component, represent the fol-
lowing changes: (1) class OverlayKit from Parent Families
P P* U U* to (Friend) Parent Families P P* U U*, and
(2) class OverlayEditor from Internal Child Families P P*
U U* to (Has Friend) Internal Child Families P P* U U*.
The first change states that OverlayKit in version 1.0.0 of
the IV Tools library (test case 2) has become a friend class,
while the second change says that OverlayEditor in version
1.0.0 declares another class as a friend. The bar represent-
ing changes in class attributes states that seven classes regis-
tered changes in the Attributes component. These changes
represent 27 attributes being added to the seven classes in
version 1.0.0 of the IV Tools library. One such attribute is
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clr button flag, cataloged as Recursive Protected Family
P, added to class GraphKit and inherited from OverlayKit.

The leftmost bar in the group labeled Routines, states
that thirty classes registered changes in the Routines com-
ponent between releases 0.7 (test case 1) and 1.0.0 (test case
2) of the IV Tools library. A summary of the changes for
the routines generated by TaxTOOL for the thirty classes in-
clude: 86 routines whose component entry changed, 12 rou-
tines were deleted and 92 routines added. One of the rou-
tines that changed was comterp visible in class GraphEd-
itor and inherited from class OverlayEditor. The change
was from Recursive (Constant) Non-Virtual Public Static
Families P P* to Recursive (Constant) Virtual Public Static
Families P P*. The bar labeled Feat Class for test cases
1 and 2 summarizes the changes captured by comparing
the cataloged entries in the Feature Classification compo-
nents for the classes in test cases 1 and 2. Fourteen classes
registered changes with respect to inherited features. The
rightmost bar of Figure 7 indicates the number of new and
deleted classes. In this case, fourteen new classes were
added to the release 1.0.0 of IV Tools library (test case 2).

5.3. Discussion

The results of our case study comparing different ver-
sions of the graphdraw [22] library were validated using
the following manual approach. We first format the code
in all test cases using the same pretty printer. We then use
the Unix diff command to identify those code segments that
changed between the test cases. For each code change in a
class, a manual check is performed to generate the compo-
nent entries for all the changed features of the class. Finally,
we compare the entries of the affected classes.

The manual process of validating the component entry
for a changed feature involve identifying the feature in each
version of the software that caused the change. If the class
containing the component change is inheritance-free, then
the code change maps directly to the component entry and
the change is easily validated. However, with classes that
are not inheritance-free, validating the component change
generally involve traversing the inheritance hierarchy and
identifying the feature in each parent class that influenced
the change.

We restrict our test suite to applications that do not con-
tain templates, since the version of Keystone [13, 16, 17]
used by Clouseau does not handle templates. Clouseau is
also unable to identify exception handling structures. Key-
stone has recently been updated to handle both templates
and the identification of exception handling structures.

6. Related Work

Kung et al. present a technique to track the changes to
OO software using a multigraph consisting of an Object Re-
lation Diagram (ORD), Block Branch Diagram (BBD) and
Object State Diagram (OSD) [10]. These graphs are used
to identify changes in the data, method, class, and class li-
brary components of the software. The model can also be
used to detect the ripple effect of the changes in the soft-
ware. The key difference between our work and Kung’s
approach is that we focus on the characteristics of the class
and we identify the ripple effect of class characteristics that
affect other classes. For example, we can identify attributes
that become polymorphic as a result of the creation of an
inheritance hierarchy.

Ryder and Tip state that some nonlocal code changes re-
sult in change impact that is qualitatively different and more
important for OO programs than for imperative programs
[21]. The authors present an approach that maps the source
code changes to a set of atomic changes. These atomic
units of change include classes, methods, fields, and their
relationships. Using a partial ordering between the atomic
changes and a set of test drivers, an analysis is performed
to determine the regression test drivers that are affected by
the set of changes. Call graphs are used as the basis of the
analysis. Our approach provides additional information for
some of the atomic changes listed above. For example, we
not only identify an added field (attribute), but we also iden-
tify a summary of its characteristics. However, we are un-
able to provide detail statement level changes as stated in
[21].

Lindvall and Runesson present an empirical study that
analyzes changes in C++ source code for two releases of
an industrial software product [12]. Each version of the
source code was analyzed using a C++ code analyzer and
the data stored in two tables. The data in the tables for
the versions of the software were analyzed to identify new,
added, changed, and unchanged entities and new, added and
unchanged relations. The results of the study suggest that
object models are too abstract to reveal changes that occur
in real OO software. This work motivates why we reverse
engineer the application to catalog classes using our taxon-
omy.

Regression test selection techniques also track changes
in software releases to identify test cases that can be reused
to test the modified software. Rothermel et al. use a class
control flow graph (CCFG) to represent the methods in a
class[19]. To track the changes between two versions of
a class the CCFGs for each class are constructed and each
node in the graph is compared. The results of this compar-
ison help the tester to identify the test cases to be rerun on
the modified class. Our approach to track changes in a class
is not as fine grain as the CCFG, however we do identify
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changes that the current version of the CCFG cannot de-
tect. These changes include accessibility of features, poly-
morphic attributes or routine locals, and inherited charac-
teristics. Our approach complements the CCFG in tracking
changes.

In [4] we used TaxTOOL to compare versions of three
applications each from three libraries. This comparison
was done at a coarser level of granularity than the com-
parison presented in this paper. After reviewing our case
study in [4], we extended TaxTOOL to included the pack-
age Tax AllAttrs that stores the component entry for every
attribute in the class being cataloged. The Tax Comparator
was initially the Tax Stats package in [4] and used to col-
lect statistics for the classes being cataloged in the software
application. In addition, Tax Stats only compared the tax-
onomy entries for the classes in the two versions of the soft-
ware application under investigation. The Tax Comparator
in our latest version of TaxTOOL not only compares taxon-
omy entries, but also compares every feature in classes with
the same name producing output as shown in Figure 6.

7. Concluding Remarks

We have presented our taxonomy that enables a main-
tainer to catalog classes based on the properties of the class
features, as well as the relationships with other classes. The
properties of the class features include a summary of the
types used, accessibility, shared class data, deferred fea-
tures, polymorphism, dynamic binding, exception handling,
and concurrency. The relationships include associations,
dependencies and generalizations. Using our taxonomy tool
we track the changes across various releases of a library ap-
plication.

Currently we are exploring the use of our taxonomy to
generate a class integration test order for applications con-
taining parameterized classes and concrete classes derived
from an abstract class. Using the information captured by
the taxonomy we plan to reduce the number of stubs re-
quired during integration testing of classes.
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