
On the importance of explicit domain modelling
in refinement-based modelling design.

Experiments with Event-B∗

Y. Aı̈t-Ameur1, I. Ait-Sadoune2, P. Casteran3, P. Gibson4, K. Hacid1, S.
Kherroubi5, D. Méry5,

L. Mohand-Oussaid2, N. K. Singh1, and L. Voisin6

1 INP-ENSEEIHT/ IRIT, Université de Toulouse, Toulouse, France
2 CentraleSupelec/LRI/Paris Saclay University, Compus de Paris-Saclay, France

3 LABRI, Université de Bordeaux, Bordeaux, France
4 Télécom Sud Paris, France

5 LORIA,Université de Lorraine & Telecom Nancy, Nancy, France
6 Systerel, Aix-En-Provence, France

yamine@enseeiht.fr

1 Context

Although several authors like P. Zave and M. Jackson[11, 17], D. Bjorner[5], A.
Van Lamsweerde [13] have drawn the attention of system designers on the ne-
cessity to handle domain knowledge, while designing systems, it is still a major
concern nowadays. The IMPEX7 project, funded by the French ANR national
research agency, addresses the problem of making explicit domain knowledge in
formal system developments using refinement and proof based formal methods.
It advocates the use and formalisation of ontologies as models for domain knowl-
edge. The Event-B[1] modelling technique has shown its usefulness to support
the various developments. In this paper, we briefly describe the approach[3] and
the case studies developed in the context of this project.

2 Formal ontologies as domain models

Gruber defines an ontology as an explicit specification of a conceptualization [7].
Another definition relies on the notion of dictionary. [12] considers a domain
ontology as a formal and consensual dictionary of categories and properties of
entities of a domain and the relationships that hold among them. Here, an entity
represents any concept belonging to the considered domain. Dictionary entails
two major concepts. First, it makes explicit the existence, through a construc-
tive definition or declaration, of entities in the domain under consideration and
second any entity or relationship described in this ontology is directly reference-
able independently of other entities or relationships. Reference is carried by a
symbol defining an identifier. Each description of each entity or relationship

∗This work was supported by grant from the French national research agency -
ANR ANR-13-INSE-0001 (The IMPEX Project http://impex.gforge.inria.fr (or
http://impex.loria.fr).

7http://impex.gforge.inria.fr (or http://impex.loria.fr)

2 Y. Aı̈t-Ameur, I. Ait-Sadoune, P. Gibson, D. Méry, N. K. Singh, L. Voisin

is formally stated using an ontology modelling language equipped with a formal
semantics. It allows automatic reasoning and consistency checking. Event-B is a
good candidate to support such formal descriptions.

2.1 Ontologies as theories in Event-B[2]

In the context of IMPEX, we have identified two approaches to define ontologies
as formal theories. They use two different modelling processes: shallow and deep.

– The shallow modelling approach consists in formalising the ontology con-
cepts directly in the target modelling language without keeping trace of the
structure of the ontology modelling language concepts [16]. One way to in-
tegrate the ontology concepts into a specific formal method development
process is to express the ontology modelling languages constructs into the
target formal language by means of transformation rules. In our case, a shal-
low modelling approach consists in encoding the ontology concepts (classes,
properties, ...) directly in an Event-B context using abstract sets, constants
and axioms.

– The deep modelling approach consists in formalising the ontology concepts
together with the concepts of the modelling language that were used to de-
fine the ontology concepts [9, 8]. Here, ontologies are defined as instances of
ontology models. Two steps are required. First, an ontology model is for-
malised and then ontologies are defined as specific models corresponding to
the defined ontology model. In our approach, we consider that both ontology
modelling concepts and ontologies are explicitly modelled. These concepts
have been formalised in Event-B. More precisely, as we consider ontologies
as theories, we have used Event-B contexts to formalise such concepts.

The OntoEventB plug-in. The OntoEventB plug-in8 [16] has been developed
to automatically support the translation of ontologies models, described using
ontology description languages such as OWL [4] or PLIB [10], into Event-B
contexts. It takes as input an ontology description file and generates, according
to the selected approach (shallow or deep), the corresponding Event-B contexts.
The OntoEventB plug-in is integrated it into Rodin. To use the OntoEventB
plug-in in your Rodin platform instance, you must install the plug-in by using
the Install New Software menu item.

2.2 The IMPEX approach[3]

As mentioned above, ontologies have been chosen as a framework for modelling
domain knowledge. Additionally, annotation relationships have been set up to
link system models concepts to its semantic description unit provided by the
ontologies. In this way, it becomes possible to consider properties of the domain
in system models. As a consequence, domain knowledge is made explicit in such
system models. Domain properties together with reasoning capabilities become
accessible from the system models.

8OntoEventB update site : http://wdi.supelec.fr/OntoEventB-update-site/

On the importance of explicit domain . . . 3

2.3 A priori or a posteriori handling of domain models

When domain models are formalised, it is possible to take into account the
expressed domain concepts and properties in system models. Two different situ-
ations depending on the availability of the considered system models may occur.

– In the a priori case, we consider that domain models are available before the
system models are produced. In this case, when designing system models,
domain concepts (axioms or theorems) are borrowed to define the system
model concepts as being subsumed by domain concepts. Note that the sub-
sumption mechanism available in ontology-based models allows a designer
to borrow only relevant concepts and properties from an ontology. The two
first examples of Section 3 report on an a priori approach.

– The a posteriori case occurs when system models are already designed. In
this case, these models are re-factored using explicit references to ontology
concepts. This mechanism uses specific references, based on explicit mapping
definitions, to borrow ontology concepts inside the re-factored models. The
last example of Section 3 reports on an a posteriori approach.

3 Case studies

In this section, we briefly present some experiments we have conducted using
both a priori and a posteriori approaches to explicitly handle domain knowledge.

Embedded systems[14] The embedded system under consideration is a nose
gear velocity update function. It is responsible of estimating the velocity of an
aircraft while moving on the ground. Hence, it is suitable to highlight the need
for identifying and integrating explicit semantics. A single explicit, requirement
is defined. EXFUN-1: While the aircraft is on the ground, the estimated veloc-
ity shall be within 3 km/hr of the true velocity of the aircraft at some moment
within the past 3 seconds. Along with EXFUN-1, we have systematically extracted
several other implicit/derived requirements from this requirements description.
An a priori model [14] of the Nose Gear Velocity system has been developed
with six Event-B refinements. The second refinement introduces the interrupt
service routine (ISR) responsible for updating the rotation counter and recording
the service request time. As per the system description, NGRotations counter
is a 16-bit counter. However, it is observed that NGRotations counter can be
modelled as an always incrementing counter – taking into account possible diam-
eters of an aircraft wheel, a 16-bit rotations counter is more than enough for the
longest existing runway. The explanations are based on the strong requirement
to avoid overflow during execution of the system: π ∗WHEEL DIAMETER ∗
NGRotations ≤ LONGEST WORLD RUNWAY or equivalently the maxi-
mal distance of the aircraft is less than the longest world runway which is Qamdo
Bamda Airport, China, 5,500 m following the Internet. It means that the con-
dition NGRotations ≤ 215 − 1 and a 16-bit counter is largely sufficient. The
validation of the choice of the size is based on a knowledge borrowed from an
ontology. The proof of absence of overflow is then obtained automatically as long
as the prover is able to handle the fact.

4 Y. Aı̈t-Ameur, I. Ait-Sadoune, P. Gibson, D. Méry, N. K. Singh, L. Voisin

Electronic voting systems[6] In Applying a Dependency Mechanism for Vot-
ing Protocol Models Using Event-B’ [6], the case study presents a method for re-
using general concepts from an e-voting domain model in the formal development
of specific systems within the same domain. The approach is refinement-based
and thus the development is a sequence of models, moving from the abstract to
the concrete. By following different refinement sequences, a family of e-voting
systems can be produced that share common properties from the e-voting do-
main. This is illustrated in the study by a development which branches (through
refinement) into two different e-voting system families. The e-voting domain
knowledge is explicitly represented in the Event-B contexts. The first Event-
B context introduces only the elements necessary to build an initial abstract
machine for the phase of behavior associated with recording votes i.e.: sets, con-
stants and static properties such as Electors, Choices, Envelopes, PollStation,
Representatives, Bulletins As this abstract machine is refined it is necessary
to extend the initial context with new conceptual elements from the e-voting
domain. These correspond to specific features (increments of behavior) which
the concrete system needs to offer; and they are added to the Event-B contexts
as required.

Medical systems[15] Here, we describe the a posteriori approach for devel-
oping a medical protocol and we revisit the ECG interpretation protocol case
study [15]. Our aim is to use domain knowledge explicitly in the development
of a medical protocol including two different models: domain model and system
model. The domain model describes the common medical concepts, relationships,
properties and axioms related to biomedical, disease, diagnosis, anatomy, clini-
cal procedure using several available medical ontologies (e.g. GALAN, OpenCyc,
WordNet, UMLS, SNOMED-CT, FMA and Gene Ontology).The system model
describes the stepwise clinical procedure for assessing the medical protocol. The
Event-B models both domain and system. Domain knowledge is described in an
Event-B context using ontology relations to capture the clinical procedure of
the medical protocol. Note that both the domain model and system model are
linked through annotation, in which the system model uses all axioms and the-
orems expressed in the domain ontology model. This model combination allows
us to verify new properties related to domain knowledge within the enriched
design medical protocol. We have used the ECG medical protocol for developing
refinement-based formal models to systematically analyse whether the formal-
isation complies with certain medically relevant protocol properties. Moreover,
this approach allows us to identify possible anomalies and to improve the quality
of the medical protocol.

4 Conclusion

Our results show that it is possible to handle formally and explicitly domain
knowledge in formal system developments with Event-B and the Rodin platform.
Ontologies have been formalised within Event-B as theories and a Rodin plug-
in has been developed for this purpose. Moreover, the a priori and a posteriori
scenarios have been set up to define system model annotations. For the future,
we plan to investigate two research directions. The first one relates to the study

On the importance of explicit domain . . . 5

of the properties of the annotation relationships, possibly modelled as Galois
connections, and the second one concerns the study of domain knowledge for
dynamic concepts like actions, events or transitions. Finally, experimenting the
proposed approach in other application engineering areas is also planned.

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

2. Aı̈t-Ameur, Y., Gibson, J.P., Méry, D.: On implicit and explicit semantics: Inte-
gration issues in proof-based development of systems. In: 6th International Sym-
posium, ISoLA 2014. LNCS, vol. 8803, pp. 604–618. Springer (2014)

3. Aı̈t Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system
development. Sci. Comput. Program. 121, 100–127 (2016)

4. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L., et al.: Owl web ontology language reference. W3C recom-
mendation 10 (2004)

5. Bjørner, D.: Manifest domains: analysis and description. Formal Asp. Comput.
29(2), 175–225 (2017)

6. Gibson, J.P., Kherroubi, S., Méry, D.: Applying a dependency mechanism for vot-
ing protocol models using event-b. In: International Conference, FORTE. Part of
the 12th DisCoTec 2017. pp. 124–138 (2017)

7. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2) (Jun 1993)

8. Hacid, K., Aı̈t-Ameur, Y.: Strengthening MDE and formal design models by ref-
erences to domain ontologies. A model annotation based approach. In: 7th Inter-
national Symposium, ISoLA 2016. LNCS, vol. 9952, pp. 340–357 (2016)

9. Hacid, K., Aı̈t-Ameur, Y.: Annotation of engineering models by references to do-
main ontologies. In: Model and Data Engineering - 6th International Conference,
MEDI 2016. LNCS, vol. 9952, pp. 234–244. Springer (2016)

10. ISO: Industrial automation systems and integration - parts library - part 42: De-
scription methodology: Methodology for structuring parts families. ISO ISO13584-
42, International Organization for Standardization, Geneva, Switzerland (1998)

11. Jackson, M., Zave, P.: Domain descriptions. In: Proceedings of IEEE International
Symposium on Requirements Engineering, RE 1993, San Diego, California, USA,
January 4-6, 1993. pp. 56–64

12. Jean, S., Pierra, G., Aı̈t-Ameur, Y.: Domain Ontologies: A Database-Oriented
Analysis. In: Web Information Systems and Technologies. pp. 238–254. Lecture
Notes in Business Information Processing, Springer Berlin Heidelberg (2007)

13. van Lamsweerde, A.: Requirements engineering in the year 00: a research per-
spective. In: Proceedings of the 22nd International Conference on on Software
Engineering, ICSE 2000, Limerick Ireland, June 4-11, 2000. pp. 5–19. ACM (2000)

14. Méry, D., Sawant, R., Tarasyuk, A.: Integrating domain-based features into event-
b: A nose gear velocity case study. In: Model and Data Engineering - 5th Interna-
tional Conference, MEDI 2015. LNCS, vol. 9344, pp. 89–102. Springer (2015)

15. Méry, D., Singh, N.K.: Medical protocol diagnosis using formal methods. In: Foun-
dations of Health Informatics Engineering and Systems - 1st International Sympo-
sium, FHIES 2011. Selected Papers. LNCS, vol. 7151, pp. 1–20. Springer (2012)

16. Mohand-Oussäıd, L., Aı̈t-Sadoune, I.: Formal modelling of domain constraints in
event-b. In: Model and Data Engineering - 7th International Conference, MEDI
2017. LNCS, vol. 10563, pp. 153–166. Springer (2017)

17. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1–30 (1997)

