
Formalising the Requirements of an E-Voting
Software Product Line using Event-B

Abderrahim Ait Wakrime∗, J. Paul Gibson† and Jean-Luc Raffy†
∗Institut de Recherche Technologique Railenium, F-59300, Famars, France.

†Telecom Sud Paris, SAMOVAR UMR 5157 CNRS Research Laboratory, Evry, France

Abstract—A Software Product Line (SPL) is a tool/method
used to generate a family of program/system variants for a
specific domain, and to support a more efficient software devel-
opment of future products within the same domain. A Feature
Model (FM) is a popular graphical/textual representation used in
SPL requirements specification; it is used to capture commonality
and variability information existing in an SPL as a set of inter-
related and configurable features. A concrete model of an SPL
instance is obtained by binding the variation information in the
FM with a configuration that meets a specific set of feature
requirements. Since configuration decisions are taken prior to
instantiation, invalid configurations should be detected/avoided
before design begins. This paper addresses the problem of the
verification of the correctness (validity) of FM instances and
FM configuration during requirements modelling. It proposes
a requirements model based on Event-B contexts, allowing us to
check the correctness of a given configuration, before starting
the correct-by-construction design and implementation process,
based on refinement.

Keywords-Software Product Lines, Feature Model Configura-
tion, Formal Modelling, Event-B, E-Voting

I. INTRODUCTION

A Software Product Line (SPL) is [1]:“. . . a set of software-
intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set
of core assets in a prescribed way.” A Feature Model (FM)

is a language used to model the commonality and variabil-

ity between product variants. Several approaches have been

proposed for combining features, where each combination

corresponds to a configuration or a program in a SPL [2], [3].

Such approaches verify only that a specific instance respects

the configuration rules specified by the feature model, so that

the system can be configured. They do not verify that the

features, as configured, are compatible (coherent). The use of

a formal specification of feature models would facilitate the

verification of both types of properties - valid configuration

and coherent configuration.
Once a configuration is verified as correct, then we must

start the development (design and implementation). A SPL

generally incorporates a general architecture which all such

instances must be built upon. Specific instances will have dif-

ferent combinations of features, each of which must be added

incrementally to the system. Adding a feature’s behaviour

can be thought of as a system refinement, and so we chose

to use a formal specification language - Event-B [4] - that

supports refinement-based development. Our approach is based

on modelling using Event-B contexts. These contexts are used

to model three inter-related types of entities: domain specific

concepts, product line features, and product line instantiation.

The structure of the paper is as follows. Section 2 puts our

contribution into context and reviews relevant related work.

Section 3 provides an overview of our generic formal SPL

approach. Section 4 illustrates how our general approach can

be applied to the problem of e-voting. Section 5 provides more

details concerning the formal verification of the instantiation

process, using a concrete e-voting system as an example. It

also comments on the notion of feature interaction, and how

such interactions can be detected during different stages of the

formal development. The 6th and final section concludes the

paper, and comments on future extensions to the research.

II. RELATED WORK

In this section, we will focus on the related works of

existing approaches of analysis of feature models (FMs) using

formal methods and the use of formal methods during e-

Voting service construction. In [5] product line models are

represented as constraint programs in order to specify con-

figuration requirements and provide support for the product

configuration activity. In [6] constraint logic programming is

also used to translate and formalize extended FMs over finite

domains in order to analyze the different relationships. In

another work [7], an approach to modelling and analyzing SPL

variant feature diagrams using first-order logic is presented.

This formalization is based on logical expressions that can

be built by modelling variants and their dependencies by

using propositional connectives. In [8] the authors adopt a

description logics-based FM, including the feature class and

the constraints of the features. Some constraints rules are

introduced to verify the consistency and completeness of FM

instances.

An alternative approach, proposed in [9], applies an artificial

intelligence planning technique to automatically select suitable

features that satisfy both the stakeholders preferences and

constraints especially with regard to non-functional properties.

In addition, the research in [10] presents a model checking

technique for SPsL, precisely modelling the FM with non-

Boolean features (numeric attributes) and multi-features. Petri

nets [11] can be used to model a FM configuration. This

approach, based on workflow Petri nets, allows a formal

operational model for staged configuration that makes explicit

causal dependencies among feature selections. Petri nets are

78

2018 IEEE 27th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises

978-1-5386-6916-7/18/$31.00 ©2018 IEEE
DOI 10.1109/WETICE.2018.00022

also integrated as an established formalism for modelling

systems with a high degree of variability in an SPL [12]. To

achieve this, a Petri net extension, named Feature Nets, is used

to provide modelling dynamic SPLs. Variability is often mod-

elled using transition systems. In [13], [14], modal transition

systems are used to model the behaviour in product families,

in order to define and derive a valid product behaviour starting

from product family behaviour.

Alternative approaches are used that provide a precise and

rigorous formal interpretation of the feature diagrams. A

binary-search based approach to FM verification is presented

in [15] in order to detect deficiencies in FMs. Similar analysis

are possible in [16] using an efficient technique for synthesis of

models from respectively CNF and DNF formulas. In another

work [17], automated analyses of FMs is adopted by translat-

ing models to propositional logic and using satisfiability (SAT)

solvers.

With respect to our validation case-study, formal methods

have been previously used for e-Voting; for example, first-

order logic is used for the analysis and development of voting

schemes to provide a formal specification and verification [18].

In [19] a formal symbolic definition of election verifiability,

based on π-calculus, to precisely identify which parts of a

voting system need to be trusted for verifiability. In [20],

formal techniques are exploited to build technical solutions

for electronic governance in order to specify desirable func-

tionality, build an implementation model and verify that the

implementation satisfies the specification. In [21], a formal

specification is presented using the Z language for the Single

Transferable Vote form of election. This specification exempli-

fies a functional decomposition style supporting the validation

of requirements.

Generally, the purpose of FMs modelling and verification is

to detect deficiencies in FMs, in order to avoid having these

deficiencies enter into the process of product development. In

our work, we provide an Event-B formal approach to check the

consistency between a FM and its configurations to manage

variability in e-voting services as well as the scalability of

automatically generating and validating configurations.

III. GENERAL APPROACH

Our approach aims to formally specify a SPL based on

FMs at a high level of abstraction using the Event-B method

based on a sequence of correct-by-construction refinements.

This formal specification provides a way to verify correctness

of such properties of FM configuration instances with respect

to product validity.

Our approach is structured as the following sequence of

activities: The user specifies their requirements through con-

figuration of the feature tree model. The validity of the

configuration is checked by the Event-B tool set and the

user can animate the high-level abstract behaviour. Once they

validate the specified requirements using the Rodin theorem

prover that supports the generation of Proof Obligations be-

longing to Event-B models, design and implementation are

done through refinement. The whole process focuses on the

client trusting that their requirements are properly specified,

and that correctness of implementation is guaranteed because

the requirements are formally specified. Fig. 1 depicts the

overall approach.

Fig. 1. Feature Models Transformation and Verification Approach.

It should be noted that this paper reports on only the

requirements engineering phase of devlopment, where we

model the chosen features using only the Event-B contexts.

The next phase of development (refinement-driven design)

combines the context specifications with Event-B machines.

An example of this correct-by-construction design approach

can be found in [22].

IV. E-VOTING FEATURE MODEL

Before presenting our e-voting FM, we need to recall some

basic concepts and definitions.

A. E-Voting Model

A FM definition was first introduced by [23] in the FODA

report in 1990. A FM represents the information of all possible

products of a SPL regarding features and relationships between

them. A FM is a graphical/textual representation that is widely

used in SPL engineering. The FMs are presented as trees in

79

which each node is a feature and each edge can have five

possible values:

• And: all sub-features must be selected.

• Alternative: only one subfeature can be selected.

• Or: one or more can be selected.

• Mandatory: features that required.

• Optional: features that are optional.

A FM may also have constraints that cannot be easily

expressed hierarchically and graphically. These constraints

are named cross-tree constraints. Cross-tree constraints are

propositional formulae using features as variables. A feature

can be concrete or abstract. A concrete feature is a terminal

feature (a leaf. of the tree). Contrastingly, an abstract feature

is a non terminal and compound feature. Fig. 2 depicts a

simplified FM to better understand the relationships between

its different entities.

Fig. 2. A sample Feature Model and its Legend.

An extract of our e-voting FM (tree) can be seen in Fig. 3.

All the concepts which appear in the tree have been formally

specified in an e-voting domain ontology. This ontology has

been validated by a domain expert. A government that wishes

to procure a particular instance of a voting system specifies a

valid instance by removing branches from the SPL FM.

A FM configuration is a set of concrete features. A config-

uration is valid if the selection of all features contained in the

configuration and the deselection of all other concrete features

is allowed by the FM. If a concrete feature is selected, its par-

ent must also be selected. If a parent is selected, all the Manda-
tory sub-features must be selected, one subfeature in each of

its Alternative groups must be selected and at least one of its

sub-features in each of its Or groups must be selected. It is

necesssary that each valid configuration satisfies propositional

constraints. For example in Fig. 2, a valid FM configuration

is: {SubFeature1 1, SubFeature2 1, SubFeature2 2}.

B. Transformation E-Voting Model using Event-B

In this section, we introduce our Event-B formalism of the

FM and its configuration correctness. The consistency of the

model is ensured by formal proofs, see section IV-C.

The Event-B model, defined in a static Context, is used

primarily to fix the definitions and formalizations of the

concepts in the FM. It also defines a static part where all the

relevant properties and hypotheses are formalised. This model

is generated automatically from the graphical feature model

specification.

The properties considered in our approach formalize the

FM, that contains a sets of relationships between a parent

feature and its child features. The FM nodes are represented

by a FEATURE set that it is divided into three subsets of the

nodes and they are classified as follows: Root, Node. A Root
represents the initial and single parent which has no parent

and identifies the SPL. The Node type is the node that has

a child and one parent. These three nodes types are used to

define a part of tree structure of FM (axm1, axm2 and axm3
of Listing 1).

The relationships between a feature and its sub-features are

represented using four constants named operators: And, Or,

Xor and Null. The And operator is used to mention that all

sub-features are mandatory. When the Or operator is bound to

a node, this node has at least one sub-feature. When the Xor
operator is bound to a node, that represents the alternative

between sub-features. Howeover, the Null operator indicates

that the feature has no sub-features i.e. this feature is a leaf.

The successors of a given feature are specified by the SuccOf
relation (axm7 of Listing 1).

CONTEXT TreeSpec
SETS FEATURE
CONSTANTS Root Node SuccOf And Or Xor Null Mandatory

SuccOfTransChildrenOf
axm1: finite(FEATURE)
axm2: partition(FEATURE, {Root}, Node)
axm3: partition(FEATURE,And,Or,Xor,Null)
axm4: partition(Node,And,Or,Xor,Null)
axm5: Mandatory ⊆ FEATURE
axm6: Root ∈ Mandatory
axm7: SuccOf−1 ∈ Node� FEATURE \Null
axm8: finite(SuccOf)
axm9: SuccOf [And] ⊆ Mandatory
axm10: 〈theorem〉 SuccOf [Xor] ∩ Mandatory = ∅

axm11: 〈theorem〉 SuccOf [And ∩ Mandatory] ⊆
Mandatory

axm12: SuccOfTrans−1 = SuccOf−1 ∪ (SuccOf−1;
SuccOfTrans−1)

axm13: 〈theorem〉 (FEATURE � id) ∪ SuccOfTrans−1

= ∅

axm14: ∀s.(s ⊆ SuccOf [s] ⇒ s = ∅)

Listing 1. An Event-B Context for describing a FM structure: a
Context TreeSpec.

The structure of a FM is represented by a graph without

cycle i.e. a tree. For that, we explicitly express the property

that verifies if a FM is exactly a tree in which any two

features are connected by exactly one path. Then, we define

a relation SuccOfTrans to check that a FM does not contain

cycles (axm12, axm13 and axm14 of Listing 1).

As mentioned before, the different relationships of a FM

are formalized by a set of operators as: And, Or, Xor and

Null (Listing 2). The And operator is used when it is bound

to a node. The children of a given feature are obtained

using the ChildrenOf relation which is defined in Event-B

80

Fig. 3. Feature Model extract for e-voting Product Line.

context (axm15 of Listing 2). The two relations SuccOf and

ChildrenOf are used at the operators And, Or and Xor level.

The operator And allows one to select all children that are also

the successors (axm16 of Listing 2). When the operator Or
is bound to a feature, this feature has at least one child and

all of its children are also successors of that feature (axm17
and axm18 of Listing 2). When the operator Xor is bound to

a feature, this feature has at least and at most a child which

is also one of its successors (axm19 and axm20 of Listing

1.2).

...
axm15: ChildrenOf ⊆ SuccOf
axm16: 〈theorem〉 (And � ChildrenOf ⊂ And �

SuccOf) ∧ (And � SuccOf ⊂ And �
ChildrenOf)

axm17: 〈theorem〉 Or � ChildrenOf ⊆ Or � SuccOf
axm18: 〈theorem〉 Or ⊆ dom(ChildrenOf)
axm19: 〈theorem〉 Xor � ChildrenOf ⊆ Xor � SuccOf
axm20: 〈theorem〉 ¬(Xor � ChildrenOf ∈ Xor →

FEATURE)
axm21: Null � ChildrenOf = ∅

axm22: 〈theorem〉 ∀x·(ChildrenOf [{x}] = SuccOf [{x}])
∧x ∈ Xor ⇒ card(SuccOf [{x}]) = 1

axm23: 〈theorem〉 SuccOf �Mandatory ⊆ ChildrenOf
axm24: 〈theorem〉 ran(Or � SuccOf) ∩ Mandatory ⊆

ran(Or � ChildrenOf)
END

Listing 2. A part of Event-B Context for describing a FM operators: a
Context TreeSpec.

C. Verifying E-Voting Configuration

This section describes the verification and validation of

our development. In the verification step, we have the static

properties of the system that can be formally verified. We

verify the static properties, which are expressed in terms of

Contexts, using formal proofs (proof obligations). In order to

check a given instance that represents a FM configuration,

we use the Context TreeSpec that defines the types and

structure FM (Listing 1 and Listing 2). The general e-voting

FM is transformed into an Event-B context to include it in

the verification process of each instance i.e. configuration.

For space reasons,we represent only a part of the complete

generic e-voting FM in Fig. 4, and how it is transformed

to an Event-B Context (Listing 3) named FMV oting. In

addition, each configuration to be verified can be translated to a

specific Event-B Context. We use the Rodin tool that supports

the application of the Event-B formal method, providing core

functionality for syntactic analysis and proof-based verification

of Event-B models [24].

CONTEXT FMV oting
SETS FEATURE
CONSTANTS V ote V oteV isibility EncryptedV ote nonEncrypted

V AccessRights V Adm V Public V None
V ADuring V AAfter V PDuring V PAfter

axm1: FEATURE = {V ote, V oteV isibility,
EncryptedV ote, nonEncrypted, V AccessRights,
V Adm, V Public, V None, V ADuring, V AAfter,
V PDuring, V PAfter}

axm2: {Root} = {V ote}
axm3: Node = {V oteV isibility, EncryptedV ote,

nonEncrypted, V AccessRights, V Adm, V Public,
V None, V ADuring, V AAfter, V PDuring,
V PAfter}

axm4: And = {V ote}
axm5: Or = {V AccessRights, V Adm, V Public}
axm6: Xor = {V oteV isibility}
axm7: Null = {V ADuring, V AAfter, V PDuring,

V PAfter}
axm8: Mandatory = {V oteV isibility, V AccessRightsy}
axm9: SuccOf [{V ote}] = {V oteV isibility}
axm10:SuccOf [{V oteV isibility}] = {EncryptedV ote,

nonEncrypted}
axm11:SuccOf [{nonEncrypted}] = {V AccessRights}
axm12:SuccOf [{V AccessRights}] = {V Adm, V Public,

V None}
axm13:SuccOf [{V Adm}] = {V ADuring, V AAfter}
axm14:SuccOf [{V Public}] = {V ADuring, V PAfter}
END

Listing 3. An Event-B Context for describing a FM of e-voting.

CONTEXT FMV otingConfOK
SETS

81

CONSTANTS
axm1: ChildrenOf [{V ote}] = {V oteV isibility}
axm2: ChildrenOf [{V oteV isibility}] = {nonEncrypted}
axm3: ChildrenOf [{nonEncrypted}] = {V AccessRights}
axm4: ChildrenOf [{V AccessRights}] = {V Adm}
axm5: ChildrenOf [{V Adm}] = {V ADuring, V AAfter}
END

Listing 4. An Event-B Context for describing a e-voting FMVotingConfOK
configuration.

Fig. 4. Feature Model extract for e-voting Product Line to model.

An example of the proofs, we established, concerns the

e-voting configuration FMV otingConfOK represented in

Listing 4. We have to prove the correctness of this instance

using the Rodin platform with its automatic prover. For this,

the proof obligations were automatically discharged without

interactions to help the provers to find the right rules, as shown

in Fig. 5. Furthermore, concerning the e-voting configuration

FMV otingConfKO represented in Listing 5, proof obliga-

tions are discharged automatically (see the proving perspective

Rodin shown in Fig. 6).

CONTEXT FMV otingConfKO
SETS
CONSTANTS
axm1: ChildrenOf [{V ote}] = {V oteV isibility}
axm2: ChildrenOf [{V oteV isibility}] = {nonEncrypted,

EncryptedV ote}
axm3: ChildrenOf [{nonEncrypted}] =

{V AccessRights}
axm4: ChildrenOf [{V AccessRights}] = {V Adm}
axm5: ChildrenOf [{V Adm}] = {V ADuring, V AAfter}
END

Listing 5. An Event-B Context for describing a e-voting FMVotingConfKO
configuration.

V. FORMAL SPECIFICATION AND INTEGRATION OF

FEATURES

In this section we describe the problem of feature interac-

tions, and the utility of a formal approach (as presented in this

paper) for detecting possible interactions as early as possible

in the development process; and to avoid future interactions

by updating the formal FM appropriately.

Fig. 5. Proving FMVotingConfOK configuration in Rodin.

Fig. 6. Proving FMVotingConfKO configuration in Rodin.

A. Feature Requirements

The feature requirements are represented as Event-B Con-

texts using sets and relations from the Event-B domain model.

Each abstract feature is represented by a Context that has

a behavior. The mismatch between FM configurations and

program variants is primarily caused by abstract features. In

this context, the interactions between abstract features can be

realized, if they share constants or/and sets. When two abstract

features interact in a coherent manner, we can classify these

abstract features as being Friends when they can always work

together in a coherent manner, or Politicians when they must

co-operate in a particular way in order for their behaviours to

be coherent. Otherwise, if they cannot interact cohernetly, then

we can classify them as Enemies [25]. We give an example of

these different interactions levels.

Example 1. Let F1 and F2 be two abstract features repre-
sented by two different Contexts and nbreCandidates a con-
stant that belongs to both Contexts. When nbreCandidates ∈
{1, 2, 3} in the F1 and nbreCandidates ∈ {1, 2, 3}
in the F2, the two abstract features F1 and F2 are
Friends. When nbreCandidates ∈ {1, 2, 3} in the F1 and
nbreCandidates ∈ {3, 4, 5} in the F2, the two abstract
features F1 and F2 are Politicians as they can agree on a value

82

of 3. On the other hand, When nbreCandidates ∈ {1, 2, 3}
in the F1 and nbreCandidates ∈ {4, 5} in the F2, the two
abstract features F1 and F2 are Enemies.

The formal event-B models allow us to automatically iden-

tify friendly feature requirements. In this case, each feature can

be developed independently, and its correctness guaranteed by

refinement. Irrespective of the design decisions taken during

the refinement process, friend machines are guaranteed to

inter-operate correctly when they are composed. In contrast,

when we detect two abstract feature requirements as Enemies,

it is mandatory to change the FM by adding a constraint

that prohibits the use of these two features, or by manual

modification of the FM structure. The 3rd case is the most

challenging: when feature requirements are Politicians we

must be careful when we develop each of them in parallel.

Although each formal refienement guarantees the correctness

of the individual feature’s behaviour, it risks breaking the

coherency with the other feature(s). We currently have no

automated technique for managing the complexity that arises

when we have to develop a SPL instance in which there are

a large number of Politician features.

B. Analyses of Interactions

As mentioned above, each abstract feature has a single

Event-B Context that describes its behavior. This feature can

have an potential incoherent interactions with other feature

during refinement process. For example, the abstract feature

V oteCounting, in the Fig. 4, allows to calculate the number

of votes for each candidate in the elections. For that, we

consider the presidential elections second round with two

candidates and the result will be a sorted list generated

automatically, that is represented with the configuration

{V oteCounting, CountingAlgorithm, V alidityChecking,-

Automatic}. Listing 6 represented the Event-B Context of

this configuration.

In this Context, the Urn set is part of the domain model

common to all e-voting systems. A Vote set (as can be recorded

in an urn) is part of the domain model common to all e-voting

systems. In the 2nd round of the election this is the first of

two candidate options is represented by OPTION1 constant.

OPTION2 constant represents the second of two candidate

options in the 2nd round of the election. An empty urn is

part of the domain model common to all e-voting systems is

defined by EMPTY URN. A valid vote, ValidVote constant, is

part of the domain model common to all e-voting systems.

but the invalid one is represented by InvalidVote constant.

The function permitting the addition of a vote to an urn

is described by addVoteToUrn. The result of counting the

votes in the urn is stored in result constant. count constant

represents the function which calculates the result of counting

the votes in the urn. In the 2nd round of the election this

is the candidate option having the most votes recorded in

the urn. when the count is carried out (or an equality if no

unique winner exists), elected constant record the candidate

in question. countVotesInUrnForOption constant is used as

function to calculate the number of votes for a specific option.

For the exceptional case when there is no clear winner after

the count i.e. we have an equality, this case is representd by

TIE constant.

Now, we will describe the internal behavior of our valid

configuration. Votes can be valid or invalid, but not both,

this constraint is part of the domain model common to all e-

voting systems, axm1. In the 2nd round of the election, only 2

candidates correspond to a valid vote, axm2. At the beginning

of the election we need an urn with no votes recorded, axm3.

The function permitting the addition of a vote to an urn,

axm4. The result of counting the votes in the urn, provides

a function mapping valid votes to their final count, axm5.

Axm6 describes the function which calculates the result of

counting the votes in the urn. In the 2nd round of the election

this is the candidate option having the most votes recorded

in the urn. when the count is carried out (or an equality if no

unique winner exists), axm7. Axm8 defines an utility function

to calculate the number of votes for a specific option. When

there are no valid votes in an empty urn, it is represented by

axm9. Taking a single vote from the urn and incrementing the

count for the valid candidate option associated to it (if the vote

is for the specified candidate option), this behavior is defined

using axm10. Axm11 is used to remove a single invalid vote

from the urn, and do not count it. Axm12 is exploited to take

a single vote from the urn and do not increment the count

as the candidate option is not the one we are lokking for. A

utility function to calculate the number of votes for a specific

option is defined by axm13. Axm14, axm15 and axm16 are

used, respectively, to describe if option1 wins, option2 wins

and if we have equality between the two options.

CONTEXT presidentialElectionSecondRound
SETS Urn V ote
CONSTANTS OPTION1 OPTION2 EMPTY _URN V alidV ote

InvalidV ote addV oteToUrn result count
elected countV otesInUrnForOption TIE

axm1: partition(V ote, V alidV ote, InvalidV ote)
axm2: V alidV ote = {OPTION1, OPTION2}
axm3: EMPTY _URN ∈ Urn
axm4: addV oteToUrn ∈ V ote× Urn→ Urn
axm5: result ∈ V alidV ote→ N

axm6: count ∈ Urn→ result
axm7: elected ∈ result→{OPTION1, OPTION2, T IE}
axm8: countV otesInUrnForOption ∈ Urn× V alidV ote

→N

axm9: ∀option·option ∈ V alidV ote⇒
countV otesInUrnForOption(EMPTY _URN
�→ option) = 0

axm10:∀option, urn·option ∈ V alidV ote ∧ urn ∈ Urn⇒
countV otesInUrnForOption(addV oteToUrn
(option �→ urn) �→ option) = 1+
countV otesInUrnForOption(urn �→ option)

axm11:∀option, urn·option ∈ InvalidV ote ∧ urn ∈ Urn
⇒countV otesInUrnForOption(addV oteToUrn
(option �→ urn) �→ option) =
countV otesInUrnForOption(urn �→ option)

axm12:∀option1, option2, urn·option1 ∈ V alidV ote ∧
option2 ∈ V alidV ote ∧ urn ∈ Urn ∧ option1 �=
option2⇒ countV otesInUrnForOption(
addV oteToUrn(option1 �→ urn) �→ option2) =
countV otesInUrnForOption(urn �→ option2)

axm13:∀opt, urn, c·opt ∈ V alidV ote ∧ c ∈ N ∧ urn ∈ Urn
⇒countV otesInUrnForOption(urn �→ opt) = c

83

axm14:∀option1, option2, urn· option1 ∈ V alidV ote ∧
option2 ∈ V alidV ote ∧ urn ∈ Urn ∧
(countV otesInUrnForOption(urn �→ option1) >
countV otesInUrnForOption(urn �→ option2))
⇒elected(count(urn)) = option1

axm15:∀option1, option2, urn· option1 ∈ V alidV ote ∧
option2 ∈ V alidV ote ∧ urn ∈ Urn ∧
(countV otesInUrnForOption(urn �→ option1) <
countV otesInUrnForOption(urn �→ option2))
⇒elected(count(urn)) = option2

axm16:∀option1, option2, urn· option1 ∈ V alidV ote ∧
option2 ∈ V alidV ote ∧ urn ∈ Urn ∧
(countV otesInUrnForOption(urn �→ option1)
= countV otesInUrnForOption(urn �→ option2))
⇒elected(count(urn)) = TIE

END

Listing 6. An Event-B Context for vote counting of presidential elections.

This Event-B Context of the Listing 6, shows explicitly the

interactions between three abstract features namely: V oteC-

ounting, CountingAlgorithm and V alidityChecking.

These features are Politicians, the combined requirements can

be met in a coherent manner but we have to be careful during

refinement that we do not introduce inconsistency. It is beyond

the scope of this paper to detail the way in which the Event-B

context requirements models are integrated into an Event-B

machine, ready for refinement-driven design.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a formal approach to

verifying the correctness of a FM configuration based on

variability management and modelling using the Event-B

method. We have also exploited requirements engineering and

domain analysis of e-voting to propose a general approach,

from design to implementation of SPLs, by strengthening and

underpinning the correct-by-construction process.

In future work, we plan to extend our formal approach to

make it more dynamic. In other words, to permit changes to

the generic SPL and specific configurations during execution

of the system. The challenge is to use the dynamic (machine)

part of Event-B, in order to validate the insertion/deletion/re-

placement of a concrete/abstract feature.

REFERENCES

[1] P. Clements and L. Northrop, Software product lines. Addison-Wesley,,
2002.

[2] J. H. Liang, V. Ganesh, K. Czarnecki, and V. Raman, “Sat-based analysis
of large real-world feature models is easy,” in Proceedings of the 19th
International Conference on Software Product Line. ACM, 2015, pp.
91–100.

[3] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and G. Saake,
“Analysis strategies for software product lines,” School of Computer
Science, University of Magdeburg, Tech. Rep. FIN-004-2012, 2012.

[4] J.-R. Abrial, Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[5] R. Mazo, C. Salinesi, O. Djebbi, D. Diaz, and A. Lora-Michiels,
“Constraints: The heart of domain and application engineering in the
product lines engineering strategy,” International Journal of Information
System Modeling and Design, vol. 3, no. 2, p. 50, 2012.

[6] A. S. Karataş, H. Oğuztüzün, and A. Doğru, “From extended feature
models to constraint logic programming,” Science of Computer Pro-
gramming, vol. 78, no. 12, pp. 2295–2312, 2013.

[7] S. Ripon, K. Azad, S. J. Hossain, and M. Hassan, “Modeling and anal-
ysis of product-line variants,” in Proceedings of the 16th International
Software Product Line Conference-Volume 2. ACM, 2012, pp. 26–31.

[8] G. Shen, Z. Huang, C. Tian, Q. Ge, and W. Zhang, “Feature modeling
and verification based on description logics.” in SEKE, 2012, pp. 422–
425.

[9] S. Soltani, M. Asadi, D. Gašević, M. Hatala, and E. Bagheri, “Auto-
mated planning for feature model configuration based on functional and
non-functional requirements,” in Proceedings of the 16th International
Software Product Line Conference-Volume 1. ACM, 2012, pp. 56–65.

[10] M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay, “Beyond boolean
product-line model checking: dealing with feature attributes and multi-
features,” in Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 2013, pp. 472–481.

[11] S. Mennicke, M. Lochau, J. Schroeter, and T. Winkelmann, “Automated
verification of feature model configuration processes based on workflow
petri nets,” in Proceedings of the 18th International Software Product
Line Conference-Volume 1. ACM, 2014, pp. 62–71.

[12] R. Muschevici, J. Proença, and D. Clarke, “Feature nets: behavioural
modelling of software product lines,” Software & Systems Modeling,
vol. 15, no. 4, pp. 1181–1206, 2016.

[13] M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti, “Modelling
and analysing variability in product families: model checking of modal
transition systems with variability constraints,” Journal of Logical and
Algebraic Methods in Programming, vol. 85, no. 2, pp. 287–315, 2016.

[14] K. Lauenroth, K. Pohl, and S. Toehning, “Model checking of domain
artifacts in product line engineering,” in Automated Software Engineer-
ing, 2009. ASE’09. 24th IEEE/ACM International Conference on. IEEE,
2009, pp. 269–280.

[15] W. Zhang, H. Zhao, and H. Mei, “Binary-search based verification
of feature models,” in International Conference on Software Reuse.
Springer, 2011, pp. 4–19.

[16] N. Andersen, K. Czarnecki, S. She, and A. Wkasowski, “Efficient
synthesis of feature models,” in Proceedings of the 16th International
Software Product Line Conference-Volume 1. ACM, 2012, pp. 106–115.

[17] M. Mendonca, A. Wkasowski, and K. Czarnecki, “Sat-based analysis
of feature models is easy,” in Proceedings of the 13th International
Software Product Line Conference. Carnegie Mellon University, 2009,
pp. 231–240.

[18] B. Beckert, R. Goré, C. Schürmann, T. Bormer, and J. Wang, “Verifying
voting schemes,” Journal of Information Security and Applications,
vol. 19, no. 2, pp. 115–129, 2014.

[19] S. Kremer, M. Ryan, and B. Smyth, “Election verifiability in electronic
voting protocols,” in European Symposium on Research in Computer
Security. Springer, 2010, pp. 389–404.

[20] J. Davies, T. Janowski, A. Ojo, and A. Shukla, “Technological founda-
tions of electronic governance,” in Proceedings of the 1st international
conference on Theory and practice of electronic governance. ACM,
2007, pp. 5–11.

[21] M. R. Poppleton, “The single transferable voting system: Functional
decomposition in formal specification,” in Proceedings of the 1st Irish
conference on Formal Methods. British Computer Society, 1997, pp.
132–149.

[22] J. P. Gibson, S. Kherroubi, and D. Méry, “Applying a dependency
mechanism for voting protocol models using event-b,” in Formal
Techniques for Distributed Objects, Components, and Systems - 37th
IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of
the 12th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017,
Proceedings, ser. Lecture Notes in Computer Science, A. Bouajjani and
A. Silva, Eds., vol. 10321. Springer, 2017, pp. 124–138. [Online].
Available: https://doi.org/10.1007/978-3-319-60225-7 9

[23] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (foda) feasibility study,”
DTIC Document, Tech. Rep., 1990.

[24] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in event-
b,” International Journal on Software Tools for Technology Transfer
(STTT), vol. 12, no. 6, pp. 447–466, 2010.

[25] G. Hamilton, J. Gibson, and D. Méry, “Composing fair objects,” in In-
ternational Conference on Software Engineering Applied to Networking
and Parallel/Distributed Computing (SNPD ’00), Fouchal and Lee, Eds.,
Reims, France, May 2000, pp. 225–233.

84

