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Abstract. All software systems execute within an environment or con-
text. Reasoning about the correct behavior of such systems is a ternary
relation linking the requirements, system and context models. Formal
methods are concerned with providing tool (automated) support for the
synthesis and analysis of such models. These methods have quite success-
fully focused on binary relationships, for example: validation of a formal
model against an informal one, verification of one formal model against
another formal model, generation of code from a design, and generation
of tests from requirements. The contexts of the systems in these cases
are treated as second-class citizens: in general, the modelling is implicit
and usually distributed between the requirements model and the system
model. This paper is concerned with the explicit modelling of contexts as
first-class citizens and illustrates concepts related to implicit and explicit
semantics on an example using the Event B language.
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1 Introduction: Implicit Versus Explicit — the Need for
Formality

In general usage, “explicit” means clearly expressed or readily observable whilst
“implicit” means implied or expressed indirectly. However, there is some inconsis-
tency regarding the precise meaning of these adjectives. For example, in logic and
belief models [1] “a sentence is explicitly believed when it is actively held to be
true by an agent and implicitly believed when it follows from what is believed.”
However, in the semantic web [2] “Semantics can be implicit, existing only in the
minds of the humans [. . . ]. They can also be explicit and informal, or they can be
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formal.” The requirements engineering community use the terms to distinguish
between declarative (descriptive) and operational (prescriptive) requirements [3]
where they acknowledge the need for “a formal method for generating explicit,
declarative, type-level requirements from operational, instance-level scenarios in
which such requirements are implicit”. We propose a formal treatment of the
adjectives implicit and explicit when engineering software and/or systems.

Nowadays, several research approaches aim at formalizing mathematical the-
ories for the formal development of systems. Usually, these theories are defined
within contexts, that are imported and and/or instantiated. They usually repre-
sent the implicit semantics of the systems and are expressed by types, logics, al-
gebras, etc. based approaches. To our knowledge, no work adequately addresses
the formal description of domains expressing the semantics of the universe in
which the developed systems run and their integration in the formal develop-
ment process. This domain information is usually defined in an “ontology” [4].

Several relevant properties are checked by the formal methods. These prop-
erties are defined on the implicit semantics associated to the formal technique
being used. When considering these properties in their context with the associ-
ated explicit semantics, these properties may be no longer respected. Without a
more formal system engineering development approach, based on separation of
implicit and explicit, the composition of software and/or system components in
common contexts risks compromising correct operation of the resulting system.
This is a significant problem when software and/or systems are constructed from
heterogeneous components [5] that must be reliable in unreliable contexts [6].

To clarify, this paper is concerned with the separation of concerns when rea-
soning about properties of models. Although the concerns need to be cleanly
separated, the models need to be tightly integrated: achieving both is a signifi-
cant challenge.

2 Integrating Implicit and Explicit: Formal Methods and
Ontologies

Allowing formal methods users and developers to integrate — in a flexible and
modular manner — both the implicit semantics, o↵ered by the formal method se-
mantics, and the explicit semantics, provided by external formal knowledge mod-
els like ontologies, is a major challenge. Indeed, the formal models should be de-
fined in the formal modelling language being used, and explicit reference and/or
annotation mechanisms must be provided for associating explicit semantics to
the formal modelling concepts. Once this integration is realized, the formalisa-
tion and verification of several properties related to the heterogeneous models’
integration becomes possible. The most important properties that need to be
addressed relate to interoperability, adaptability, dissimilarity, re-configurability
and identification of degraded modes. Refinement/instantiation and composi-
tion/decomposition could play a major role for specifying and verifying these
properties. Currently, no formal method or formal technique provides explicit
means for handling such an integration.

In the context of formal methods, it is well known that several formal meth-
ods for system design and verification have been proposed. These techniques
are well established on a solid formal basis and their domain of e�ciency, their
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strengths and weaknesses are well acknowledged by the formal methods com-
munity. Although, some ad-hoc formalisation of domain knowledge [7–9] within
formal methods is possible, none of these techniques o↵ers a built-in mechanism
for handling explicit semantics.

Regarding ontologies and domain modelling, most of the work has been
achieved in the large semantic web research community. There, the problem
consists of annotating web pages and documents with semantic information
belonging to ontologies. Thus, ontologies have mainly been used for assigning
meanings and semantics to terms occurring in documents. Once, these meanings
are assigned, formal reasoning can be performed due to the ontologies being
based on descriptive logic. In general, however, the documents to be annotated
do not conform to any model and the domain associated to the documents is
not fixed. Therefore, ontologies behave like a model associated to the resources
that are annotated.

We propose an integration of both worlds. On the one hand, formal methods
facilitate prescriptive modelling whereas, on the other hand, ontologies provide
mechanisms for explicit descriptive semantics. We conclude by noting that, in
most cases, the formal models are usually defined in a fixed and limited appli-
cation domain well understood by the developers.

3 A Simple Example

The illustration of the addressed problem and the underlying ideas are given
in this section through a simple case study. As a first step, we demonstrate
a typical development involving solely a formal model; and in a second step
we show how formalized explicit knowledge contributes to identifying relevant
problems related to heterogeneity.

Let us consider a simple system issued from avionic system design. We iden-
tify two sub-systems: the first one is part of the flight management system acting
in the closed world (heart of the avionic systems), it produces flight information
like altitude and speed; and the second is the display part of a passenger infor-
mation system (open world). It displays, to the passengers, information issued
from the closed world, here altitude and speed. The information is transmitted
from the closed world to the open world within a communication bus. Commu-
nications are unidirectional from the closed world to the open world only.

The development of this system considers a formally expressed specification
which is refined twice. Figure 1 shows the structure of the development for this
case study. The next two subsections show the two proposed formal developments
expressed within the Event B formal method.

We note that this example is intended only as a proof-of-concept. Its goal
is not to demonstrate the power of our approach, it shows only that there is
utility in separating the implicit and explicit semantics and that there is at least
one such way of doing this separation in Event-B. This demonstrates that a
fully formal and automated approach is feasible. Further work — on a range of
case studies — will examine and compare di↵erent mechanisms for implementing
the approach, with particular emphasis on scaleability and universality: can we
model much larger, heterogeneous, domains of knowledge?
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Fig. 1. A global view of the formal development.

3.1 Formal Model with implicit Semantics

In the implicit semantics, the models are constructed within the modelling ca-
pabilities o↵ered by the modelling language.
The machine level: specification. The first formal specification of the prob-
lem expresses that the system should communicate a computed value to be dis-
played. Variables, described in the invariant clauses, are speed (recording the ef-
fective speed), alt (recording the e↵ective altitude), display speed (recording the
displayed speed), display alt (recording the displayed altitude) and consumed

(recording the control and the synchronisation between the produced and the
consumed values. Two events are defined, one producing the information to be
displayed and a second displaying this information.

EVENT Compute aircraft info

WHEN
grd1 : consumed = 1

THEN
act1 : alt :2 N1
act2 : speed :2 N1
act3 : consumed := 0

END

EVENT Display aircraft info

WHEN
grd1 : consumed = 0

THEN
act1 : display alt := alt

act2 : display speed := speed

END

inv1 : speed 2 N1
inv2 : alt 2 N1
inv3 : consumed 2 {0, 1}
inv4 : display speed 2 N1
inv5 : display alt 2 N1

Event Compute aircraft info models the up-
date step for the altitude and the speed; the
consumed variable is set to 0 and the event Dis-
play aircraft info is triggered when the variable
Display aircraft info is updated by the sent
value.
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The invariant types and constrains the variables within numerical bounds; it
does not take into account the fact that the produced values and consumed values
belong to di↵erent domains. The ontological context is to provide information for
relating these two domains. The main idea is to annotate the model by expressing
the knowledge domain using the context models in figure 2.

First refinement: introducing an abstract communication protocol.
The new model First Refinement extends the state by new variables recording
the tra�c of messages through a bus. It specifies that we have to manage the
transmission of messages with the addition of new control variables (written,
read, displayable). Two new events model the reading and the writing to and
from the bus. The two abstract events are refined by strengthening guards with
respect to the new control variables (read, written, displayable). The new model
introduces an abstract protocol for the bus.

EVENT compute aircraft info 1

REFINES compute aircraft info

WHEN
grd1 : consumed = 1
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : alt :2 N1
act2 : speed :2 N1
act3 : consumed := 0

END

EVENT Display aircraft info 1

REFINES Display aircraft info

WHEN
grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 0
grd4 : displayable = 1

THEN
act1 : display alt := read alt

act2 : display speed := read speed

act3 : displayable := 0
END

The two next events model the abstract protocol for exchanging the data.
They describe the fact that a value is written to and then read from an abstract
bus.

EVENT write info on bus

WHEN
grd1 : consumed = 0
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : alt bus := alt

act2 : speed bus := speed

act3 : written := 0
END

EVENT read info from bus

WHEN
grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : read alt := alt bus

act2 : read speed := speed bus

act3 : read := 0
END

Second refinement: concretizing the bus for communication. The cur-
rent system is still abstract and we have to add details concerning the bus.
Finally, the four events of the model First Refinement are refined to concretize
actions over the bus b. The two first events are directly related to the computa-
tion and display components.

EVENT compute aircraft info 2

REFINES compute aircraft info 1

WHEN
grd1 : consumed = 1
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : alt :2 N1
act2 : speed :2 N1
act3 : consumed := 0

END

EVENT Display aircraft info 2

REFINES Display aircraft info 1

WHEN
grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 0
grd4 : displayable = 1

THEN
act1 : display alt := read alt

act2 : display speed := read speed

act3 : displayable := 0
END
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The next two events are the operations over the bus. They precise how the
speed and altitude information are written to and read from the bus b

EVENT read info from bus 2

REFINES read info from bus

WHEN
grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 1
grd4 : displayable = 1
THEN
act1 : read alt := value of alt on bus(b)
act2 : read speed := value of speed on bus(b)
act3 : read := 0
END

EVENT write info on bus 2

REFINES write info on bus

WHEN
grd1 : consumed = 0
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : value of alt on bus(b) := alt

act2 : value of speed on bus(b) := speed

act5 : written := 0
END

3.2 Formal Model with Explicit Semantics

The previous development follows the formal modelling approach provided by the
Event B method, focusing on the binary relation referred to in the introduction
of this paper.

The second development, presented below, introduces the explicit knowledge
carried out by ontologies, it is used for coding the ternary relationship referred to
in the introduction. In the case of Event B, it is formalized within contexts. The
ternary relationship is obtained by annotation i.e. linking the model elements,
variables in our case, to the explicit knowledge. In the following we illustrate
the process of handling explicit domain knowledge in Event B models, using the
same aircraft case study as before.
Contexts for defining explicit domain knowledge. The first step consists of
introducing the explicit domain knowledge through a formal model for ontologies.
It will be used to annotate the concepts seen in the previous models.

In the simple case we are addressing, this knowledge is defined by contexts
(see figure 2). In this case, we are concerned by the description of the units that
may be associated to the altitude and to the speed.

CONTEXT domain knowledge for units

CONSTANTS
inches,meters,mph, kph, inch2meters,mphour2kphour

AXIOMS
axm1 : inches ✓ N1
axm2 : meters ✓ N1
axm3 : mph ✓ N1
axm4 : kph ✓ N1
axm5 : inches 6= ?
axm6 : meters 6= ?
axm7 : mph 6= ?
axm8 : kph 6= ?
axm9 : inch2meters 2 inches ! meters

axm10 : mphour2kphour 2 mph ! kph

END

Fig. 2. The ontological context

Meters, inches, kilometers per hour, and miles per hour are introduced to
define distance speed measures. Conversion functions, that define equivalences
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in terms of ontology definitions, are described by the functions inch2meters and
mphour2kphour. We do not detail the defintions of these two functions but they
can be made more precise by an implementation step at a later phase in the
process.
Annotation: associating explicit knowledge to model variables. Once
the explicit knowledge has been formalized, it becomes possible to annotate the
concepts available in the obtained formal models. In our case, the variables are
annotated by explicitly referring to the ontology defined in the context of figure 2.
Measurement units are introduced in an explicit way.

The variables are then defined as follows:

inv1 : speed 2 mph

inv2 : alt 2 inches

inv3 : consumed 2 {0, 1}
inv4 : display speed 2 kph

inv5 : display alt 2 meters

When the annotations have been specified, the verification of the previous de-
velopment defined in section 3.1 is no longer correct. Some proof obligations
cannot be satisfied due to incoherent assignments. The new invariant defines
the ontological constraints that should be satisfied by the events. For exam-
ple, one of the generated proof obligations for checking the preservation of
inv5 : display alt 2 meters by the event Display aircraft info fails to prove that
alt 2 meters. Thus, we should modify the event Display aircraft info by removing
the previous act1 and act2 and by adding the ontological information provided
by the two functions inch2meters and mph2kphour in the rewritten actions
nact1 and nact2 . The example is simple and gives an obvious way to solve the
unproved proof obligation: without refinement it may be much more di�cult to
discover why similar proof obligations are not discharged.

Consequently, the following events — Display air craft info and Compute aircraft

info — require further description. In Particular, Display aircraft info has been
modified in order to handle converted values issued from Compute aircraft info.

EVENT Compute aircraft info

WHEN
grd1 : consumed = 1
THEN

act1alt :2 inches

act2speed :2 mph

act3consumed := 0
END

EVENT Display aircraft info

WHEN
grd1 : consumed = 0

THEN
nact1display alt := inch2meters(alt)
nact2 : display speed := mphour2kphour(speed)

END

First refinement: introducing an abstract communication protocol. As
a next step, we can add new features in the current model Main exchange by
refining it into First Refinement Dom.

The new model First Refinement Dom performs the same extension of the
state as in the previous case using implicit knowledge. This is quite natural since
none of these state variables (i.e. written, read, displayable) are annotated. Two
new events model the reading to and the writing from the bus. The invariant is
extended by sub-invariants inv6 . . . inv15. Notice the introduction of new kinds
of invariants, labeled inv13 and inv14, borrowed from the context where the
explicit knowledge is described. They define ontological invariants.
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inv1 to inv5 of last model

inv6 : speed bus 2 kph

inv7 : read alt 2 meters

inv8 : read speed 2 kph

inv9 : alt bus 2 meters

inv10 : written 2 {0, 1}
inv11 : read 2 {0, 1}
inv12 : displayable 2 {0, 1}
inv13 : (written = 0) ) (alt bus = inch2meters(alt) ^ speed bus = mphour2kphour(speed))
inv14 : (read = 0) ) (read alt = alt bus ^ read speed = speed bus)
inv15 : (displayable = 0) ) (display alt = read alt ^ display speed = read speed)

The two abstract events are refined by strengthening guards with respect to
the new control variables (read, written, displayable). The new model introduces
an abstract protocol for the bus.

EVENT compute aircraft info 1

REFINES compute aircraft info

WHEN
grd1 : consumed = 1
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : alt :2 inches

act2 : speed :2 mph

act3 : consumed := 0
END

EVENT Display aircraft info 1

REFINES Display aircraft info

WHEN
grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 0
grd4 : displayable = 1

THEN
act1 : display alt := read alt

act2 : display speed := read speed

act3 : displayable := 0
END

The two next events model the abstract protocol for exchanging the data.
The abstract protocol manages the relationship between the measurement units.
The ontological annotation appears in the invariant inv13: the protocol ensures
the correct communication.

EVENT write info on bus

WHEN
grd1 : consumed = 0
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : alt bus := inch2meters(alt)
act2 : speed bus := mphour2kphour(speed)
act3 : written := 0

END

EVENT read info from bus

WHEN
grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : read alt := alt bus

act2 : read speed := speed bus

act3 : read := 0
END

Context extension: need of explicit knowledge for the bus. The current
system is still abstract and we have to add details concerning the bus. Following
good engineering practice, the communication bus should be described indepen-
dently of any usage in a given model. Here again, an ontology of communication
medias is needed. It is defined in a context that extends the one defined for mea-
sure units. The bus has specific properties that are expressed in a new context
domain knowledge for protocols(in figure 3).

Notice that the definition of explicit knowledge is modular. It uses contexts
that import only those ontologies that are needed for a given development. More-
over, it is flexible since contexts can be changed, if the domain knowledge or the
nature of the manipulated concepts evolves. The whole formal development of
the system does not need to be rewritten.
Second refinement: concretizing the bus for communication. The new
invariant extends the previous one, whilst integrating the state of the bus. It
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CONTEXT domain knowledge for protocols

EXTENDS domain knowledge for units

SETS
bus, bus type

CONSTANTS
unidirectional, bidirectional, type of bus

AXIOMS
axm1 : bus type = {unidirectional, bidirectional}
axm2 : type of bus 2 bus ! bus type

axm3 : bus 6= ?
axm4 : 9bb·(bb 2 bus ^ type of bus(bb) = unidirectional)

END

Fig. 3. Context for the bus

also asserts that the bus is unidirectional. The invariant Ninv3 : b 2 bus is an
ontological invariant and the context enriches the description of the domain.

Ninv1 : value of speed on bus 2 bus ! kph

Ninv2 : value of alt on bus 2 bus ! meters

Ninv3 : b 2 bus

Ninv4 : (written = 0) ) (value of speed on bus(b) = mphour2kphour(speed))
Ninv5 : (written = 0) ) (value of alt on bus(b) = inch2meters(alt))
Ninv51 : type of bus(b) = unidirectional

Ninv6 : (read = 0) ) (read speed = value of speed on bus(b))
Ninv7 : (read = 0) ) (read alt = value of alt on bus(b))
Ninv8 : alt bus = value of alt on bus(b)
Ninv9 : speed bus = value of speed on bus(b)

Finally, the four events of the model First Refinement Dom are refined to con-
cretize the actions over the bus b. The two first events are directly related to the
computation and display components.

EVENT compute aircraft info 2

REFINES compute aircraft info 1

WHEN
grd1 : consumed = 1
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : alt :2 inches

act2 : speed :2 mph

act3 : consumed := 0
END

EVENT Display aircraft info 2

REFINES Display aircraft info 1

WHEN
grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 0
grd4 : displayable = 1

THEN
act1 : display alt := read alt

act2 : display speed := read speed

act3 : displayable := 0
END

The two next events — read info from bus 2 and write info on bus 2 — model
operations over the bus. They both deal with ontological annotations, where the
more detailed characteristics of the bus are necessary for guaranteeing the safety
of the global system.

EVENT read info from bus 2

REFINES read info from bus

WHEN
grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : read alt := value of alt on bus(b)
act2 : read speed := value of speed on bus(b)
act3 : read := 0

END
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EVENT write info on bus 2

REFINES write info on bus

WHEN
grd1 : consumed = 0
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN
act1 : value of alt on bus(b) := inch2meters(alt)
act2 : value of speed on bus(b) := mphour2kphour(speed)
act5 : written := 0

END

The summary of proof obligations tells us that the proof is not complex.
In fact, the example is simple and does not require further interaction as the
ontological annotations help to automatically derive the proofs.

4 Discussion

4.1 Proof-Based Development Methods for Safe and Secure Models
and Systems: The Importance of Refinement

Deductive verification for program correctness has outstanding challenges (as
mentioned by Filiatre [10]). Formal methods toolsets assist the developer who
is trying to check a set of proof obligations using a proof assistant. In contrast
to these semi-automatic proof techniques, model checking [11] appears to be a
better solution when the developer does not want to interact with the proof tool
and, although model checking is addressing specific systems with a reasonable
size or is applied on abstractions of systems to facilitate the proof, there are
limits to the use of model checking-based techniques. Finally, another solution
is to play with abstractions and to apply the abstract interpretation [12] engine
by defining appropriate abstractions and domains of abstractions for analysing a
program. Deductive verification techniques, model checking and abstract inter-
pretation analyse programs or systems which are already built and we call this
the a posteriori approach where the process of analysis tries to extract semantic
information from the text of the program or the system.

The correct-by-construction approach [13] advocates the development of a
program using a process which is proof-guided or proof-checked and which leads
to a correct program. This is an a-priori verification approach. These proof-
based development methods [14, 15] integrate formal proof techniques in the
development of software and/or systems. The main idea is to start with a very
abstract model of the system under development. Details are gradually added to
this first model by building a sequence of more concrete ones. The relationship
between two successive models in this sequence is that of refinement [14–18]

The essence of the refinement relationship is that it preserves already proven
system properties including safety properties and termination. At the most ab-
stract level it is obligatory to describe the static properties of a model’s data by
means of an invariant predicate. This gives rise to proof obligations relating to
the consistency of the model. These are required to ensure that data properties
which are claimed to be invariant are preserved by the events or operations of
the model.

The Event BMethod [19, 20] is a refinement-based, correctness-by-construction
approach for the development of event-based systems (or, more generally, event-
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based models). Several case studies [21, 22] show that the Event B method
provides a flexible framework for developing complex systems in an incremental
and proof-based style. Since refinement necessitates checking proof obligations,
an idea is to introduce concepts of reusability and instantiation of Event B mod-
els [23, 24]: making it possible to re-apply already developed and proven models.

Refinement is a critical step in formal design: as we move from the abstract
to the concrete we transform our requirements into an operational solution.
Without refinement, the correctness of non-trivial design steps is usually a com-
putational intensive (often intractable) problem. Refinement allows us to split
the design phase into a sequence of refinement steps, each of which is proven
correct through the discharging of proof obligations. When the sequence is well-
engineered, this can often be done in an automated fashion. The role of the
software engineer is to “find” such a sequence. The purpose of this research is
to aid the engineer in this task.

4.2 Explicit Semantics of modelling Domains and Domain
Ontologies

According to Gruber [4], an ontology is a specification of a conceptualisation. An
ontology can be considered as the modelling of domain knowledge. Nowadays,
ontologies are used in many diverse research fields and several proposals for
ontology models and languages and corresponding operational systems have been
developed in the last decade. The main characteristics of an ontology are: being
formal and consensual and o↵ering referencing capabilities.

As both an ontology and a conceptual model define a conceptualization of a
part of the world, we must clarify their similarities and di↵erences. Conceptual
models respect the formal criterion. Indeed, a conceptual model is based on a rig-
orously formalized logical theory and reasoning is provided by view mechanisms.
However, a conceptual model is application requirement driven: it prescribes
and imposes which information will be represented in a particular application
(logical model). Thus, conceptual models do not fulfil the consensual criterion.
Moreover, an identifier of a conceptual model defined concept is a name that can
be referenced only inside the context of an Information System. Thus, conceptual
models also do not fulfil the capability to be referenced criterion [25].

Several ontology models — like OWL [26] and KAON [27] for description
logic, and PLIB [28] and MADS [29] for database design — are based on con-
structors provided by conceptual models based on either database or knowledge
base models. These models add other constructors that facilitate satisfaction of
the consensual criterion (context definition, multi-instantiation) and the capa-
bility to be referenced criterion.

Within our approach, it is clear that re-usable domain knowledge can, and
should, be integrated into the modelling of a system’s environment. A problem
with current modelling approaches is that this knowledge is often distributed be-
tween the inside and the outside of a system in an ad-hoc fashion. By formalising
the notion of ontology we can encourage (perhaps oblige) system engineers to be
more methodological in how they structure and re-use their ontologies. We are
currently investigating whether this can be done through a better integration of
existing ontology models into our Event-B framework (through annotations) or
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whether we need to build a re-usable ontological framework in Event-B, moti-
vated by the aspects of existing ontology models that we have found useful in
our case studies.

4.3 Properties and Methodology

The separation of implicit from explicit gives rise to many di�culties with respect
to the methodological aspects of developing software and/or systems, but it
opens up many opportunities with respect to the types of properties that can be
handled more elegantly. Building on the notion of functional correctness — where
a software and/or a system must be verified to meet its functional requirements
when executing in a well-behaved environment — we must consider the issue of
system reliability being compromised. In such circumstances we would like the
behaviour to degrade in a controllable, continuous, manner rather than having a
non-controllable abrupt crash. One of the advantages of the proposed approach is
that we can automatically distinguish between problems due to an environment
which is not behaving as expected (where the system makes an assumption
about its environment which is false some time during execution) and an internal
fault (where the environment makes some assumption about the system which
is false some time during execution). We can also automatically execute some
self-healing mechanism that is guaranteed — through formal verification — to
return the system and its environment to a safe, stable state.

The key to our methodology is the integration of the implicit and explicit
modelling, which is shown in figure 4. The architecture should be generally appli-
cable to the development of software and/or systems in a wide range of problem
domains. This needs to be validated through application of the tools and tech-
niques in a range of case studies that go beyond the case study presented in this
paper. The development approach may also be considered generic with respect
to its application using a variety of formal techniques rather than specific to a
single (set of) method(s).

As a minimum, the formal models must o↵er mechanisms for (de)composing
systems, as well as for refinement and instantiation. The separation of implicit
and explicit semantics is critical to independent development and verification.
Furthermore, as illustrated in the case study of this paper, their integration
must be directly supported by the development architecture: the implicit mod-
els will reference the explicit semantics which will provide annotations for the
operational models. The best means of supporting this integration require fur-
ther work: especially when we consider that combining top-down and bottom-up
approaches in a formal development process is already very challenging. Initial
work has shown us that the combination of di↵erent software development tech-
niques (in particular, refinement with composition) is a major challenge. This is
normally done in an ad-hoc manner, where the many di↵erent composition mech-
anisms lead to sate explosion problems when analysing behaviour. We propose
working in an algebraic manner, which will constrain the ways in which compo-
sition can be performed: making our methodology simpler and more amenable
to automated verification. A simplification of the semantics of composition risks
reducing the expressiveness of our language, but we argue that finding the bal-
ance is a key part of making our approach both sound, in theory, and applicable,



Implicit and Explicit Semantics 13

Fig. 4. A research architecture

in practice. This balance is necessarily di↵erent when considering implicit and
explicit aspects of modelling. Without a separation of these concerns, we risk a
compromise which helps in the development of neither. Through separation, we
can better balance the modelling of each.

5 Conclusions

We have argued that many problems in the development of correct software
and/or systems could be better addressed through the separation of implicit
and explicit semantics. The key idea is to re-formalize correctness as a ternary
(rather than binary) relation.

We have proposed that traditional formal methods need to be better inte-
grated with ontology models, in order to support a clearer separation of concerns.

Through a simple example, we have illustrated how ontological semantics
can be specified using Event B contexts and that this information can be inte-
grated with the behavioral requirements — in an incremental fashion — through
refinement. The simple example addresses the simple problem of information in-
terchange. (A good example of the consequences of not modelling this formally
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can be found in the report on the Mars Climate Orbiter [30] where confusing
imperial and metric measurements caused a critical failure.)

A main contribution of the paper is to place the implicit-explicit structure
within the context of the relevant state-of-the-art. We emphasise the impor-
tance of building on well-established formal methods, treating domain/context
ontology models as first-class citizens during development, and the need for a
pragmatic approach that integrates into existing methods in a unified and co-
herent fashion.

Finally, we give an overview of where we think further research needs to
be done, formulating the goals as the need for an architecture of inter-related
research tasks.
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