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Motivations

• Investigate computational power of a novel model of computation

• Relationship between models of computation and scientific theories
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CSM definition

• Images are the basic data units in the CSM

• A complex-valued image (or simply, an image) is a complex-valued function
on the real unit square

f : [0, 1]× [0, 1] 7→ C
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CSM definition

A continuous space machine is a quintuple M = (D,L, I, P,O), where

D = (m,n) , D ∈ N× N : grid dimensions

L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) : addresses sta, a, and b

I =
{(
ι1ξ, ι1η

)
, . . . ,

(
ιkξ, ιkη

)}
: addresses of the k input images

P =
{(
π1, p1ξ

, p1η

)
, . . . ,

(
πr, prξ, prη

)}
, πj ∈ ({h, v, ∗, ·, +, ρ, st, ld, br, hlt} ∪

N ) ⊂ I : the r programming symbols and their addresses

O =
{(
o1ξ
, o1η

)
, . . . ,

(
olξ, olη

)}
: addresses of the l output images.

Also, (sξ, sη), (aξ, aη), (bξ, bη), (ιk′
ξ
, ιk′η), (pr′ξ

, pr′η), (ol′ξ
, ol′η) ∈ {0, . . . ,m − 1} ×

{0, . . . , n− 1} for all k′ξ, k
′
η ∈ {1, . . . , k}, r′ξ, r

′
η ∈ {1, . . . , r}, l′ξ, l

′
η ∈ {1, . . . , l}.

A CSM configuration is a pair 〈c, g〉
c is an address called the control, g = ((i0 0, 0, 0), . . . , (im−1n−1,m− 1, n− 1))
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CSM operations

h : horizontal 1-D Fourier transform

v : vertical 1-D Fourier transform

∗ : complex conjugate

· : multiply two images (point by point multiplication)

+ : add two images (complex addition)

ρ zl zu : image filter using lower and upper amplitude
threshold images zl and zu.

a b
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CSM operations

st p1 p2 p3 p4 : p1, p2, p3, p4 ∈ N; copy the image in a into the rectangle

of images whose bottom left-hand corner address is (p1,p3)

and whose top right-hand corner address is (p2, p4).

ld p1 p2 p3 p4 : p1, p2, p3, p4 ∈ N; copy into a the rectangle of images

whose bottom left-hand corner address is (p1,p3) and whose

top right-hand corner address is (p2, p4).
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CSM operations

br p1 p2 : p1, p2 ∈ N; unconditionally branch to the image at address

(p1, p2).
hlt : halt.

: move to the next grid image (ignore images that do not

represent a programming symbol).
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Complexity measures

Computational complexity measures are used to analyse CSM instances

• time = number of computation steps

• space = number of images in grid

• resolution = max spatial resolution, relative to some unit image

• range = number of bits required to represent the values in the set f ′ where

f : [0, 1]× [0, 1] 7→ f ′ ⊆ C
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Symbols, words, languages

{0, 1}
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}

L ⊆ {0, 1}∗
Given L and w ∈ {0, 1}∗, is w ∈ L?
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Representing data as images

ψ ∈ {0, 1} is represented by the binary symbol image fψ,

fψ(x, y) =

{
1, if x, y = 0.5, ψ = 1
0, otherwise

w = w1w2 · · ·wk ∈ Σ+ is represented by the binary list image fw,

fw(x, y) =

{
1, if x = 2i−1

2k , y = 0.5, wi = 1
0, otherwise

w = w1w2 · · ·wk ∈ {0, 1}+ is represented by the binary stack image fw,

fw(x, y) =

{
1, if x = 1− 3

2k−i+2, y = 0.5, wi = 1
0, otherwise

List/stack image fw is said to have length k ∈ N. (fw, k) uniquely represents w.
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Representing data as images

r ∈ R is represented by the real number image fr

fr(x, y) =

{
r, if x, y = 0.5
0, otherwise

R × C matrix A, with real-valued components aij, is represented by the R × C
matrix image fA

fA(x, y) =

{
aij, if x = 1− 1+2k

2j+k
, y = 1+2l

2i+l

0, otherwise
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Language deciding by CSM

CSM ML decides L ⊆ Σ∗ if ML has initial configuration 〈cs, gs〉 and final configuration

〈ch, gh〉, and the following hold:

• sequence gs contains the two input elements (fw, ι1ξ, ι1η) and (f
1|w|, ι2ξ, ι2η)

• gh contains the output element (f1, o1ξ
, o1η) if w ∈ L

• gh contains the output element (f0, o1ξ
, o1η) if w /∈ L

• 〈cs, gs〉 `∗M 〈ch, gh〉, for all w ∈ Σ+.

Where fw is the binary stack image representation of w ∈ Σ+, f
1|w| is the unary stack

image representation of the unary word 1|w|. Images f0 and f1 are the binary symbol image

representations of the symbols 0 and 1, respectively.
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Analog recurrent neural networks

• Finite size feedback first-order neural networks with real weights

• Model of analog computation, by Siegelmann and Sontag, TCS, 1994

xi(t+ 1) = σ

 N∑
j=1

aijxj(t) +
M∑
j=1

bijuj(t) + ci

 , i = 1, . . . , N

σ(x) =

 0, if x < 0
x, if 0 ≤ x ≤ 1
1, if x > 1 .
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CSM simulation of ARNN

sta u ΣAX ΣBU t1 a b t2 O I 0 1
99 br 0 14

(i) 14 ld I st t1a st I ld t1 st u
(ii) 13 ld x whl N−1 st t3 ld x ld at3 end

(iii) 12 st b ld A ·
(iv) 11 st t2 ld 0 whl N−1 st t1 ld t2 st bt2 ld t1 + end

10 st b ld t2 + st ΣAX

(v) 9 ld u whl N−1 st t3 ld u ld at3 end

(vi) 8 st b ld B ·
(vii) 7 st t2 ld 0 whl M−1 st t1 ld t2 st bt2 ld t1 + end

6 st b ld t2 + st ΣBU

(viii) 5 ld ΣAXst b ld ΣBU + st b ld c +

(ix) 4 ρ 0̂ 1̂ st t3 ld 0 st t1
(x) 3 whl N−1 ld t3 st at3 ld t1a st t1 end ld t3 st ab ld t1a st t1

2 whl N−1 ld t1 st t1a ld ab st b end ld t1 st t1a ld ab st x

(xi) 1 st b ld P · st t1 ld O ld t1a st O
(xii) 0 br 0 14

0 1 2 3 4 5 6 7 8 9 10 . . . x N−1 M−1 A B c P
note: address t3 is located at grid coordinates (10, 14)
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CSM simulation of ARNN

(i) u := I.pop()
(ii) X := push x onto itself vertically N − 1 times
(iii) AX := A ·X
(iv) ΣAX := ΣNi=1

(
AX.popi()

)
(v) U := push u onto itself vertically N − 1 times
(vi) BU := B · U
(vii) ΣBU := ΣMi=1

(
BU .popi()

)
(viii) affine-comb := ΣAX + ΣBU + c
(ix) x′ := ρ(affine-comb, 0, 1)
(x) x := (x′)T

(xi) O.push (P · x)
(xii) goto step (i)
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CSM decides any L ⊆ {0, 1}+

• Formal nets; a class of ARNNs that decide languages

• For each L ⊆ {0, 1}+ there exists formal net FL that decides L

• We carry this result over to the CSM by giving a CSM D that

– is consistent with the definition of language deciding by CSM
– decides L by simulating FL
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CSM D

sta u ΣAXΣBU t1 a b t2 fψw fw f
1|w|

0 1

99 br 0 18
18 ld fw st b ld 0 st t2
17 whl f

1|w|
ld b st t1a st b ld t2 ld t1a st t2 end st fw

16 ld fw st t1a st fw ld t1 st 13 16 14 14 ld 14 17 14 14
15 st b ld f

1|w|
st t1a st f

1|w|
ld t1 st 13 16 14 14

14 ld 12 15 14 14 + st u br 0 13
...

1 st b ld P · st t3 st t1 whl Ov st t1a end ld t1 br 0 â

f1 ld t3 whl Od st t1a end ld t1 st fψw hlt

f0 br 0 16

0 1 2 3 4 5 6 7 8 . . . Od Ov x N − 1 M − 1 A B c P
note: address t3 is located at grid coordinates (10, 18)
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CSM D

CSM D, in the worst case, requires

• linear time

T (N,M,TTT (|w|), |w|, d, v) = 12|w|+ 7d+ (49N + 7v + 67)TTT (|w|) + 22

• exponential resolution

R(N,M,TTT (|w|), |w|, d, v) = max(2|w|, 2(2N−2))

• constant space

• infinite range ω
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Needle in haystack problem

• Given w ∈ 0∗10∗, what is the index of the ‘1’ in w?

• Conventional (serial) computer requires Θ(n) steps, worst case

• Grover’s quantum computer algorithm requires O(
√
n) comparisons, average

case

• CSM algorithm requires Θ(log2 n) steps, worst case
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Needle in haystack problem
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Needle in haystack problem

(8,99)
(0,3)
(4,3)
(0,w)
(0,1)
(0,2)
(8,2)
(8,1)
(14,1)
(8,2)
(8,0)
(16,0)

(0,0)

procedure search(i1, i2)
e := i2
c := f0

while (e.pop() = f1)
rescale i1 over both image a and image b
FT, square, and FT image a
if (a = f1)
i1 := LHS of i1
c.push(f0)

else /* a = f0 */
i1 := RHS of i1
c.push(f1)

end if
end while
a := c

end procedure
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Needle in haystack problem

On input word of length n, CSM needle in haystack algorithm, in the worst case,
requires

• log time, T (n) = 23 log2 n+ 11

• linear resolution, R(n) = 2n

• constant space

• constant range
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Future work

• Prove further computability and complexity results

• Investigate (computationally less powerful) variants of the CSM
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Summary

• Presented the continuous space machine

• Analog recurrent neural network simulation

• A log time solution to the needle in haystack problem

• Acknowledgements: TASS, IRCSET

This work is in submission to TCS, available as NUIM-CS-TR-04-2003.
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