Continuous-space model of computation

Damien Woods

Thomas J. Naughton, Paul gibson

TASS research group, Department of Computer Science, NUI Maynooth, Ireland

Motivations

- Investigate computational power of a novel model of computation
- Relationship between models of computation and scientific theories

CSM definition

- Images are the basic data units in the CSM
- A **complex-valued image** (or simply, an image) is a complex-valued function on the real unit square

 $f:[0,1]\times [0,1]\mapsto \mathbb{C}$

CSM definition

A continuous space machine is a quintuple M = (D, L, I, P, O), where

$$\begin{split} D &= (m, n) , \ D \in \mathbb{N} \times \mathbb{N} : \text{grid dimensions} \\ L &= ((s_{\xi}, s_{\eta}), (a_{\xi}, a_{\eta}), (b_{\xi}, b_{\eta})) : \text{addresses } \textit{sta}, \textit{a}, \text{and } \textit{b} \\ I &= \left\{ \left(\iota_{1_{\xi}}, \iota_{1_{\eta}} \right), \ldots, \left(\iota_{k_{\xi}}, \iota_{k_{\eta}} \right) \right\} : \text{addresses of the } k \text{ input images} \\ P &= \left\{ \left(\pi_{1}, p_{1_{\xi}}, p_{1_{\eta}} \right), \ldots, \left(\pi_{r}, p_{r_{\xi}}, p_{r_{\eta}} \right) \right\}, \ \pi_{j} \in (\{\textit{h}, \textit{v}, \ast, \cdot, +, \rho, \textit{st}, \textit{ld}, \textit{br}, \textit{hlt}\} \cup \\ \mathcal{N}) \subset \mathcal{I} : \textit{the } r \textit{ programming symbols and their addresses} \\ O &= \left\{ \left(o_{1_{\xi}}, o_{1_{\eta}} \right), \ldots, \left(o_{l_{\xi}}, o_{l_{\eta}} \right) \right\} : \textit{addresses of the } l \textit{ output images}. \\ \textit{Also, } (s_{\xi}, s_{\eta}), (a_{\xi}, a_{\eta}), (b_{\xi}, b_{\eta}), (\iota_{k'_{\xi}}, \iota_{k'_{\eta}}), (p_{r'_{\xi}}, p_{r'_{\eta}}), (o_{l'_{\xi}}, o_{l'_{\eta}}) \in \{0, \ldots, m - 1\} \times \\ \{0, \ldots, n - 1\} \textit{ for all } k'_{\xi}, k'_{\eta} \in \{1, \ldots, k\}, r'_{\xi}, r'_{\eta} \in \{1, \ldots, r\}, l'_{\xi}, l'_{\eta} \in \{1, \ldots, l\}. \end{split}$$

A CSM configuration is a pair $\langle c, g \rangle$ c is an address called the control, $g = ((i_{0\,0}, 0, 0), \dots, (i_{m-1\,n-1}, m-1, n-1))$

CSM operations

threshold images z_{l} and z_{u} .

CSM operations

st p1 p2 p3 p4 : $p1, p2, p3, p4 \in \mathbb{N}$; copy the image in **a** into the rectangle of images whose bottom left-hand corner address is (p1,p3)and whose top right-hand corner address is (p2, p4).

ld	p1	p2	p3	p4]: $p1, p2, p3, p4 \in \mathbb{N}$; copy into a the rectangle of images
					whose bottom left-hand corner address is $(p1,p3)$ and whose
					top right-hand corner address is $(p2, p4)$.

CSM operations

brp1p2: p1, p2 ∈ N; unconditionally branch to the image at address
(p1, p2).hlt: halt.:move to the next grid image (ignore images that do not
represent a programming symbol).

Complexity measures

Computational complexity measures are used to analyse CSM instances

- TIME = number of computation steps
- SPACE = number of images in grid
- RESOLUTION = max spatial resolution, relative to some unit image
- RANGE = number of bits required to represent the values in the set f' where

$$f:[0,1]\times[0,1]\mapsto f'\subseteq\mathbb{C}$$

Symbols, words, languages

$$\{0,1\} \\ \{0,1\}^* = \{\varepsilon,0,1,00,01,10,11,000,\ldots\} \\ L \subseteq \{0,1\}^* \\ \text{Given } L \text{ and } w \in \{0,1\}^*, \text{ is } w \in L?$$

Representing data as images

 $\psi \in \{0,1\}$ is represented by the binary symbol image f_{ψ} ,

 $w = w_1 w_2 \cdots w_k \in \Sigma^+$ is represented by the binary list image f_w ,

List/stack image f_w is said to have length $k \in \mathbb{N}$. (f_w, k) uniquely represents w.

Damien Woods, TASS, Department of Computer Science, NUI Maynooth

Representing data as images

 $r \in \mathbb{R}$ is represented by the real number image f_r

$$f_r(x,y) = \begin{cases} r, & \text{if } x, y = 0.5\\ 0, & \text{otherwise} \end{cases}$$

 $R\times C$ matrix A, with real-valued components $a_{ij},$ is represented by the $R\times C$ matrix image f_A

Language deciding by CSM

CSM M_L decides $L \subseteq \Sigma^*$ if M_L has initial configuration $\langle c_s, g_s \rangle$ and final configuration $\langle c_h, g_h \rangle$, and the following hold:

- sequence g_s contains the two input elements $(f_w, \iota_{1_{\xi}}, \iota_{1_{\eta}})$ and $(f_{1^{|w|}}, \iota_{2_{\xi}}, \iota_{2_{\eta}})$
- $g_{\rm h}$ contains the output element $(f_1, o_{1_{\mathcal{E}}}, o_{1_{\eta}})$ if $w \in L$
- g_{h} contains the output element $(f_0, o_{1_{\mathcal{E}}}, o_{1_{\eta}})$ if $w \notin L$
- $\langle c_{\rm s}, g_{\rm s} \rangle \vdash^*_M \langle c_{\rm h}, g_{\rm h} \rangle$, for all $w \in \Sigma^+$.

Where f_w is the binary stack image representation of $w \in \Sigma^+$, $f_{1|w|}$ is the unary stack image representation of the unary word $1^{|w|}$. Images f_0 and f_1 are the binary symbol image representations of the symbols 0 and 1, respectively.

Analog recurrent neural networks

- Finite size feedback first-order neural networks with real weights
- Model of analog computation, by Siegelmann and Sontag, TCS, 1994

$$x_{i}(t+1) = \sigma \left(\sum_{j=1}^{N} a_{ij} x_{j}(t) + \sum_{j=1}^{M} b_{ij} u_{j}(t) + c_{i} \right) , \quad i = 1, \dots, N$$
$$\sigma(x) = \begin{cases} 0, & \text{if } x < 0\\ x, & \text{if } 0 \le x \le 1\\ 1, & \text{if } x > 1 \end{cases}$$

CSM simulation of **ARNN**

CSM simulation of **ARNN**

CSM decides any $L \subseteq \{0, 1\}^+$

- Formal nets; a class of ARNNs that decide languages
- For each $L \subseteq \{0,1\}^+$ there exists formal net \mathcal{F}_L that decides L
- \bullet We carry this result over to the CSM by giving a CSM ${\cal D}$ that
 - is consistent with the definition of language deciding by CSM
 - decides L by simulating \mathcal{F}_L

$\text{CSM} \ \mathcal{D}$

	sta					\overline{u}	$\Sigma \overline{AX}$	$\Sigma \overline{BU}$		t_1	а	b	t_2		$f_{\psi w}$	f_w	$f_{1 w }$	0	1
99	br	0	18																
18	ld	f_w	st	b	ld	0	st	t_2											
17	whl	$f_{1 w}$	ld	b	st	t_1 a	st	b	ld	t_2	ld	t_1 a	st	t_2	end	st	f_w		
16	ld	f_w	st	t_1 a	st	f_w	ld	t_1	st	13	16	14	14	ld	14	17	14	14	
15	st	b	ld	$f_{1 w}$	st	t_1 a	st	$f_{1 w }$	ld	t_1	st	13	16	14	14				
				1.				1											
14	ld	12	15	14	14	+	st	\overline{u}	br	0	13								
÷																			
1	st	b	ld	\overline{P}	•	st	t_3	st	t_1	whl	O_v	st	t_1 a	end	ld	t_1	br	0	â
f_1	ld	t_3	whl	$\overline{O_d}$	st	t_1 a	end	ld	t_1	st	$f_{\psi w}$	hlt							
f_0	br	0	16																
	0	1	2	3	4	5	6	7	8	•••	$\overline{O_d}$	$\overline{O_v}$	\overline{x} .	N - 1	M-1	\overline{A}	\overline{B}	\overline{c}	\overline{P}
	note: address t_3 is located at grid coordinates $(10, 18)$																		

Damien Woods, TASS, Department of Computer Science, NUI Maynooth

$\text{CSM} \ \mathcal{D}$

CSM $\mathcal{D}\text{,}$ in the worst case, requires

• linear TIME

T(N, M, T(|w|), |w|, d, v) = 12|w| + 7d + (49N + 7v + 67)T(|w|) + 22

• exponential RESOLUTION

$$R(N, M, \mathbf{T}(|w|), |w|, d, v) = \max(2^{|w|}, 2^{(2N-2)})$$

- constant SPACE
- infinite RANGE ω

- Given $w \in 0^*10^*$, what is the index of the '1' in w?
- Conventional (serial) computer requires $\Theta(n)$ steps, worst case
- Grover's quantum computer algorithm requires $O(\sqrt{n})$ comparisons, average case
- CSM algorithm requires $\Theta(\log_2 n)$ steps, worst case

(8,99)	procedure search(i1, i2)
(0,3)	e := i2
(4,3)	c := f_0
(0,w)	while (e.pop() = f_1)
(0,1)	rescale i1 over both image a and image b
(0,2)	FT, square, and FT image a
(8,2)	if (a = f_1)
(8,1)	i1 := LHS of i1
(14,1)	$c.push(f_0)$
(8,2)	else /* a = f_0 */
(8,0)	i1 := RHS of i1
(16,0)	$c.push(f_1)$
	end if
	end while
(0,0)	a := c
	end procedure

On input word of length n, CSM needle in haystack algorithm, in the worst case, requires

- log time, $T(n)=23\log_2 n+11$
- linear resolution, R(n) = 2n
- constant SPACE
- constant RANGE

Future work

- Prove further computability and complexity results
- Investigate (computationally less powerful) variants of the CSM

Summary

- Presented the continuous space machine
- Analog recurrent neural network simulation
- A log time solution to the needle in haystack problem
- Acknowledgements: TASS, IRCSET

This work is in submission to TCS, available as NUIM-CS-TR-04-2003.