FORGET FOREIGN LANGUAGES AND MUSIC. TEAGH
OUR RIDS TO CODE

O had by 1998 become shocked at the ineptness of his students. “I was
lllustration: geeing 18- and 19-year-olds having trouble with basic programming
Renald) concepts that I myself had learned when I was 12,” recalls Gibson, who
Cala I taught himself to code on a Sinclair ZX81. “I realized they hadn’t seen any
programming in school at all up to that point. So I thought maybe one of
the problems we were having is that they were coming to it too late.” As word of
Gibson’s classes spread, primary schools in the Dublin area sought his services too.

By the early 2000s, Gibson was using game-design puzzles to teach rudimentary
Java to 8- and 9-year-olds. His success with that age group made him wonder: How
young is too young to begin coding?

Gibson had read educational psychology that suggested it was futile to try to reach
children who had yet to achieve literacy. But when he made experimental forays into
classrooms of 5- and 6-year-olds, the kids grasped his lessons with surprising ease.

With the help of a custom Java applet, he was able to get kindergartners to write a
tic-tac-toe program, based on step-by-step rules the students formulated as a
group. And using colored balls and string, he taught the kids how to create graph
algorithms, an essential component of computer science. “We believe our work
shows that you can start teaching computer science before students even know how
to read and write,” Gibson (who now teaches in France) wrote in a 2012 paper.

“Children aged from 5-11 have so much potential for learning about algorithms and
computation that it would be a shame to wait until they are teenagers before we
teach them the foundations.” That notion is still too radical for most educators.
While a popular movement is afoot to teach children, including adolescents, to code
—touted by the likes of Bill Gates and basketball star Chris Bosh—few people
believe that kindergartners can learn how to bend machines to their will.

The general assumption is that young kids lack the faculties to comprehend a topic
as seemingly esoteric as programming.

A sorting game devised by computer scientist J. Paul Gibson to teach the concept of algorithms to children.

But that pessimism is at odds not only with the experiences of Gibson and other
pioneering teachers but also with the science of language acquisition. Extensive
research has shown that because young brains are so adept at picking up languages,
it’s best to introduce children to foreign tongues as early as possible. This is why so
many ambitious parents are now clamoring for kindergartens that offer intensive
Mandarin—they want to give their kids the best possible shot at learning a key
language of the Asian century.

What those parents likely don’t realize is that the same neural mechanisms that
make kids sponges for Mandarin likely also make them highly receptive to computer
languages. Kindergartners cannot become C++ ninjas, but they can certainly start to
develop the skills that will eventually cement lifelong fluency in code.

And encouraging that fluency should be a priority for American schools, because it
is code, not Mandarin, that will be the true lingua franca of the future.

Perhaps you remember the turtle. In the early to
mid 1980s, the Logo programming language, with its
iconic turtle-shaped cursor, was the fad in American
elementary schools. By using Logo’s simple
commands to create intricate graphics, kids were
supposed to develop mastery over the Apple Ile’s that
had begun to appear in their living rooms.

But Logo seldom delivered on its lofty promise. The
main problem was not the language itself but the
lackluster way in which it was taught: Many
instructors simply plopped students in front of
computers for an hour a week and hoped for the best.

The resulting disillusionment coincided with the
emergence of media that transformed school
computers from exploratory tools into library aids.
“CD-ROMs came out, then the World Wide Web
appeared, so you didn’t need to know commands to
interact with the computer,” says Yasmin Kafai, an
education professor at the University of
Pennsylvania.

Programming vanished from elementary schools for
decades, even as computer science became an ever
more popular pursuit at the collegiate level. A
cultural consensus seemed to spring up: Kids should
be taught a nebulous set of “computer skills,” but
programming—well, that was for grown-ups.

In the past five years, however, a number of groundbreaking
projects have begun to prove that consensus wrong. Besides
Gibson’s tic-tac-toe and graph theory lessons, there is Scalable
Game Design, a curriculum developed at the University of Colorado
that challenges kids to code their own versions of Frogger. At P.S.
185 in Harlem, children as young as 4 are using a language called
Cherp to make robots perform household chores. And it’s
happening overseas too: In Estonia an initiative called ProgeTiiger
is striving to teach coding basics to all first graders.

What all these initiatives have in common is an emphasis not on memorizing how to
use specific tools but on developing familiarity with the general concepts that
underpin all programming—sequencing, conditionals, debugging.

When helping students code their first Frogger, for example, Scalable Game Design
instructors urge them to think first about the game’s various agents—that is, the
frog and the lethal vehicles — and then about all the possible interactions those
agents can have. The kids slowly learn how to craft rules and conditionals that add
up to a logical, functional whole.

'The fact that young children can manage such
Eelaborate tasks should be no great surprise, given
‘ 'what we know about their knack for acquiring
glanguages. Five-year-olds trump their elders at

learning Spanish or Mandarin because young
Videogames created by grade-school kids prajng are better (so the theory goes) at
through the Scalable Game Design formulating “procedural” memories—that is,
memories that become so deeply embedded in a
person’s psyche that recalling them is a natural
reflex rather than a conscious task.

curriculum. Some thoughts from the
coders: (1) “The goal is to try to get to the
helicopter.” (2) “Dodge the rocks and get
to the coins.” (3) “We are a zombie and we

try to reach a diamond. To move you use

The evidence is beginning to suggest that as brains
age, their capacity for procedural memory
diminishes in favor of “declarative” memory, which
we use to amass facts. The drawback to declarative memory is that it requires
mental exertion to tap into—a huge minus when you’re trying to conjugate a tricky
foreign verb on the fly. It is far preferable to have those conjugations be second
nature to you, as a result of having learned them when your procedural memory was
at its sharpest.

the arrow keys. You have to not hit the

ghost or else you lose.”

No one seems to have researched precisely how programming languages are
learned, but there is every reason to believe that they’re best absorbed by students
primed to form procedural memories.

“I would speculate that the same general-purpose memory systems that underlie
language learning in children and adults likely underlie the learning of computer
languages,” says Michael Ullman, director of the Brain and Language Lab at
Georgetown University Medical Center. A key data point in favor of this view is the

evidence

regarding music: great violinists don’t start learning the instrument
when they’re 20 years old but rather when they’re 3 or 4, a time
when procedural memory is most sensitive.

And what is music if not a form of code—a series of abstract signals
that must be sequenced properly in order to please the human ear?

In a perfect world, kindergartners would receive instruction in both
programming and foreign language as part of their day. But if a
school has to choose, a strong case can be made for code. The most
obvious argument, of course, is economic: Demand for software
developers already far outstrips supply, and it’s expected to
increase 30 percent by 2020 — more than double the average for all
other jobs. (It’s difficult to imagine any scenario in which those
opportunities will be outnumbered by jobs requiring fluent
Mandarin.)

Yet teaching programming is not just about creating an army of
code monkeys for Facebook and Google.

Just as early bilingualism is thought to bring about cognitive
benefits later in life, early exposure to coding shows signs of
improving what educators call “computational thinking”—the
ability to solve problems with abstract thinking. And even for
students who never warm to programming, whose innate passions
lead them toward English degrees rather than software
engineering, understanding code still has great value.

As the media theorist Douglas Rushkoff has observed, to ignore
programming is akin to relying on others to drive us around instead
of learning to drive ourselves. The majority of our interactions in 50
years won’t be with monolingual humans from Asia; they’ll be with
machines. So let’s teach our kids to tell them what to do, rather than
the other way around.

