
featured columns

18 acm Inroads 2012 December • Vol. 3 • No. 4

Computing in SChoolS
Michal
Armoni

Teaching CS in Kindergarten:

how Early Can the
pipeline Begin?

In an InterestIng talk, given in
the last ITiCSE conference [2], Paul Gibson
described a unique outreach initiative that
starts as early as kindergarten, with chil-
dren as young as five years old. This ambi-
tious program touches theoretical abstract
computer science (CS) concepts such as
graph connectivity and graph isomorphism.
While a methodological study on the ef-
fectiveness of this program is yet to be con-
ducted, Gibson’s impressions indicate that
even at this early age, children are capable
of working with abstractions and use com-
putational reasoning. This project continues
a series of projects introducing formal com-
puting methods [3] and programming (in
Java) [4] to children of various ages, though
in previous projects the youngest children
were seven years old.

The rationale and motivation behind the
development of such programs is clear. It is
well known that enrollment to undergradu-
ate CS studies does not meet the require-
ments of the job market, and that among
other reasons affecting students’ decision
not to major in CS are students’ miscon-
ceptions regarding the nature of CS and of
the work in CS and their negative attitudes
towards CS. Therefore, the recommenda-
tion is to expose students to CS before they
form these misconceptions and attitudes,

and before decisions affecting enrollment
are taken. Many argue that high school is
too late for such an exposure and indeed
many attempts are reported, which start at
junior high school and even primary school.

So why not start earlier?
I don’t have an answer for this question,
but I do believe it is not a trivial question

and one that deserves some serious think-
ing. Of course, a straightforward answer
to this question would be:

Why not, as long as no harm is
done?
I am not sure we can automatically con-
clude that no harm is done, not without
deeply considering it, and I believe that we
should also consider the issue of effective-
ness, that is – whether any good comes
out of it.

An inherent component of any
discussion of or introduction to CS is
abstraction. It is always there, to some
extent. The basic idea of a solution to a
problem encapsulates abstraction in it,
since such a solution is always universal,
one solution for all possible inputs. The
simplest instructions in any programming
language encapsulate abstraction, since
such instructions are actually patterns that
become specific instructions once values
are incorporated into it. As noted above,
in the project presented by Gibson the
children are introduced to concepts in
graph theory, which are no doubt abstract
concepts.

Can very young children
understand abstraction, even
in its basic forms?
According to Piaget, they cannot, not in
its real sense [5]. Before the age of seven,
children are at the preoperational stage of
their cognitive development. Piaget noted
that children in this stage do not yet un-
derstand concrete logic, and cannot ma-
nipulate information mentally, only physi-
cally. Even older children (seven to eleven
years of age) who are at the concrete
operational stage, can only solve problems
that apply to actual (concrete) objects or
events, and not abstract concepts or hypo-
thetical tasks. At the concrete operational
stage, the child develops an ability to think
abstractly and rationally, but only about
concrete or observable phenomena.

Bruner [1] argued for spiral teaching,
that is, fundamental ideas and central con-
cepts should be revisited again and again
throughout the curriculum, but at each
age they should be taught at a level that
corresponds to the current developmental
stage of the students. Following Bruner’s

Even older children
(seven to eleven
years of age) who
are at the concrete
operational stage,
can only solve
problems that apply
to actual (concrete)
objects or events,
and not abstract
concepts or
hypothetical tasks.

featured columns

2012 December • Vol. 3 • No. 4 acm Inroads 19

recommendations, perhaps these abstract
ideas can be taught to younger children,
if connected to concrete objects and if
(at the earlier ages of five through seven)
information is manipulated physically.

Actually, this is exactly the didactic
approach in Gibson’s projects. Students
search and sort bits of strings; they rea-
son on primality by organizing sweets in
rectangles, they use sticky colored bricks
to reason about parity. They “prove”
properties by looking at specific concrete
cases. We are familiar with this approach
from math education, where concrete
objects like different kinds of blocks
are used to teach very young children
about the abstract concepts of numbers
and number operations. Of course, we
should keep in mind that according to
Bruner’s framework, the educational goal
is not to teach children how to add and
subtract blocks, or how to sort bits of
strings, or how to check if sweets can be
organized in rectangles. The goal is that
this concrete knowledge will in due time
evolve or transfer to more general and
abstract contexts. So, let us try to look at
math education research regarding this
approach, and perhaps we can import
from their body of knowledge into CS
education.

In a very interesting essay, included
in a book on conceptual (abstract) and
procedural (concrete) knowledge of math-
ematics, Schoenfeld [6] discussed teach-
ing of abstract concepts using concrete
reference systems, such as concrete block
systems for teaching numbers and number
operations. Schoenfeld points at a few
factors and obstacles that complicate such
didactic learning processes. Here are three
of these.
• First, the more natural a representation

is, the harder it might be to abstract
the underlying ideas.

• Second, in most cases, the concrete
world does not completely map into
the abstract world, which might cause
confusion, difficulties, and even mis-
conceptions.

• Third, children fail to connect the
concrete world and the “real” abstract
world. In a sense, for them the two
worlds can live side by side, with no
connection between them.

For example, they might try to take
actions in the concrete world (like doing a
certain geometrical construction) ignoring
results that they know and understand in
the abstract world (of Euclidean geom-
etry). They will “prove” correctness of
procedures performed in the concrete
world, by looking at concrete examples
and concrete features (like accuracy of
drawing), ignoring proof tools they are
familiar with in the abstract world.

Teaching abstraction in early ages
necessitates concrete reference sys-
tems. Even if the children are capable
of reasoning mentally in these concrete
systems, which can probably happen
only if they are at least seven years old,
the transfer to the abstract world, which
is the ultimate teaching goal, is ques-
tionable. In addition, if some transfer is
achieved, but it carries along with it some
inaccuracies of the concrete represen-
tation, it may result in confusion and
misconceptions.

This discussion is by no means thor-
ough or exhaustive, and it brings no
bottom line regarding a question like
“teaching CS in kindergarten – good or
bad?” My objective here is to emphasize
that there are uncertainties, and many
question marks, and that these questions

deserve deep consideration, with theoreti-
cal and empirical treatment. Ir

References
 [1] Bruner, J. S. (1960). The Process of Education. Cambridge,

MA : Harvard University Press.
 [2] Gibson, J. P. (2012). Teaching graph algorithms to children

of all ages. In Proceedings of the 17th Annual SIGCSE
Conference on Innovation and Technology in Computer
Science Education (ITiCSE’12), July 3–5, 2012, Haifa,
Israel. T. Lapidot, J. Gal-Ezer, M. E. Caspersen, and O. Haz-
zan, Eds. New York: ACM Press, 34-39.

 [3] Gibson. J. P. (2008). Formal methods — never too young
to start. In Z. Istenes, Ed., Proceedings of Formal Methods
in Computer Science Education (FORMED 2008), Buda-
pest, Hungary, 151–160.

 [4] Gibson. J. P. (2003). A noughts and crosses Java applet
to teach programming to primary school children. In
Proceedings of the 2nd International Symposium on Prin-
ciples and Practice of Programming in Java (PPPJ 2003),
volume 42 of ACM International Conference Proceeding
Series, Kilkenny City, Ireland. J.F. Power and J. Waldron,
Eds. New York: ACM Press, 85–88.

 [5] Santrock, J. W. (2004). Life-Span Development (9th Ed.).
Boston, MA: McGraw-Hill College - Chapter 8.

 [6] Schoenfeld, A. H. (1986). On having and using geometric
knowledge. In J. Hiebert, Ed., Conceptual and Procedural
Knowledge: The Case of Mathematics. Hillsdale, NJ:
Lawrence Erlbaum, 225-264.

michal Armoni
Weizmann Institute of Science
Rehovot 76284 Israel
Michal.Armoni@weizmann.ac.il

Doi: 10.1145/2381083.2381091

Copyright held by author.

Dozenal
Society

of America
◆ ◆ ◆ ◆ ◆

www.dozenal.org

