
FEBRUARY 2020 | VOL. 63 | NO. 2 | COMMUNICATIONS OF THE ACM 25

V
viewpoints

• Peter G. Neumann, Column Editor

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

F
ROM W HAT I have seen, heard,
and read, confusion and mis-
information abound about
software and safety. I have
worked in this area for nearly

40 years, starting around the time when
computers were beginning to be intro-
duced into the control of safety-critical
systems. I want to share what I have
learned. Too many incorrect beliefs are
being promoted, which are inhibiting
progress and, in some cases, unneces-
sarily costing lives. This column clari-
fies this topic so that the solutions we
propose are more likely to have a sig-
nificant impact on safety.

With only a few exceptions, software
was not used to directly control safety-
critical systems until approximately
1980, although it was used to provide
computational power for complex sys-
tems, such as spacecraft. Direct control
was very limited, but the hesitation has
now almost completely disappeared
and software is used to control most
systems, including physical systems
that could involve potentially large and
even catastrophic losses.

Originally, “embedded software”
was used to denote these new control
roles for software, but more recently
the term “cyber-physical systems” has
come into vogue. The figure here shows
a standard cyber-physical control loop.
Note that, for some reason, cyber-phys-
ical systems usually forget that control
can be, and often is, provided by hu-
mans. In a little more realistic model

(but more complicated than necessary
here), there would be two controllers
where a human controller is providing
control signals to a computer control-
ler. To cover more than the unusual
case where there are no human con-
trollers, we should actually talk about
“cyber-human-physical” systems. Even
so-called “unmanned” air vehicles, for
example, usually have a human con-
troller on the ground. A more realistic
and complete model is provided in Ap-
pendix G of the STPA Handbook.4

As illustrated in the figure here, a
controller (or controllers, which may be
human, automated or both) compares
the current state of the controlled pro-
cess with the control goals and sends
control signals to an actuator, which in
turn may be automated or human. The
actuators translate the control signals

into physical actions on the controlled
process. Sensors provide feedback
about the state of the controlled pro-
cess to the controller so it can deter-
mine the state of the controlled system
and decide whether further control
signals are needed. The actuators and
sensors may be software, hardware,
physical devices, or humans.

In order to decide on what control
actions to provide in order to satisfy
its goals (requirements), the control-
ler must have a model (often called
a mental model when the controller
is human) of the current state of the
controlled process. The most common
cause of accidents stemming from un-
safe controller action is that the model
of the controlled process is incorrect:
the pilot thinks the aircraft is not in
a stall when it is and does not issue a

Inside Risks
Are You Sure Your Software
Will Not Kill Anyone?
Using software to control potentially unsafe systems requires
the use of new software and system engineering approaches.

DOI:10.1145/3376127	 Nancy Leveson

http://dx.doi.org/10.1145/3376127

26 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

viewpoints

As a simple, real-world example, con-
sider going out to the middle of a large
deserted area, pointing a gun away
from oneself, and firing. If there is no-
body or nothing in the vicinity, the gun
could be considered to be both reliable
and safe. Consider, however, doing the
same thing in a crowded mall. The gun
has not changed, the gun’s reliability
has not changed, and the action (pull-
ing the trigger) has not changed. But
the safety certainly has.

The accompanying sidebar high-
lights three examples out of hundreds
of similar losses.4 Considering reliabil-
ity only at the system level (instead of
the component level) does not help.
Complex systems almost always have
many requirements (or goals) while
there are constraints on how those
goals can be achieved. As an example,
a chemical plant may very reliably pro-
duce chemicals (the goal or mission of
the plant) while at the same time pol-
luting the environment around the
plant. The plant may be highly reliable
in producing chemicals but not safe.
Most safety-critical systems have both
mission (non-safety) requirements and
safety constraints on how the mission
or goals can be achieved. A “system fail-
ure” or inability to satisfy its require-
ments is not equivalent to a hazard or
an accident. One exception is if safety
is the only goal of the system; however,
even for systems such as air traffic con-
trol, there are usually non-safety goals
such as optimizing throughput in addi-
tion to the safety goals.

A common approach to assess-
ing safety is to use probabilistic risk
assessment to assess the reliability
of the components and then to com-
bine these values to obtain the sys-
tem reliability. Besides the fact that
this assessment ignores accidents
that are caused by the interactions
of “unfailed” components (see Mis-
conception 3), most of these assess-
ments include only random hardware
failures and assume independence
between the failures. Therefore, they
provide anything close to a real safety
assessment when the systems are just
hardware and relatively simple. Such
systems existed 50+ years ago when
these probabilistic risk methods were
developed; virtually all systems today
(particularly complex ones) contain
non-stochastic components including

required control action to escape from
the stall, the driver does not see the
pedestrian and does not brake in time
to prevent a collision, the weapon con-
troller thinks that friendly troops are
the enemy and initiates friendly fire.
The pilot, driver, and weapon control-
ler can be human or computerized, or
a combination of both.

Accidents involving computers (and
humans) most often occur when their
models of the current state of the con-
troller do not match the actual state of
the controlled process; the controller
issues a control action that is appropri-
ate for a different state but not the one
that currently exists. As an example,
the software controller thinks the air-
craft is in a stall when it is not and is-
sues a control action to escape the non-
existent stall only to inadvertently put
the aircraft into a dangerous state.

Starting from this foundation, let’s
consider some of the most common
misconceptions with respect to soft-
ware and safety.

Misconception 1:
Software Itself Can Be Unsafe
Software cannot catch on fire or ex-
plode; it is an abstraction. Only physical
entities can inflict damage to life and
property: physical energy is usually re-
quired to inflict physical harm. In the
figure in this column, software sends
control signals to a physical process,
which may have physical effects. Nucle-
ar power plants can release radiation,
chemical plants can release toxins,
weapon systems can explode or inadver-
tently target a friendly object, for
exsmple. One old model of an accident
describes it as uncontrolled energy.

Software does not release energy; it
simply releases bits, which can be used
to send a control signal.

To avoid misconceptions that arise
from the term “software safety,” some-
times safety engineers speak of “soft-
ware system safety,” to denote the
contribution of software behavior to a
dangerous process. An alternative con-
ception is to speak of the contribution
of software to system safety. Either way,
by considering software in isolation,
without including the controlled physi-
cal process, it is not possible to assure
anything about the safety of the system
the software is controlling.

The Ariane 4 software Inertial Refer-
ence System was perfectly safe in that
launcher. However, when reused in the
Ariane 5, it led to an explosion and loss
of a satellite. Many accidents involve
reused software.3 It is not the software
that is unsafe, but the entire system
controlled by the software.

Misconception 2:
Reliable Systems Are Safe;
That Is, Reliability and Safety
Are Essentially the Same Thing.
Reliability Assessment Can
Therefore Act as a Proxy for Safety
Reliability and safety are different sys-
tem properties and sometimes even
conflicting. This is true also with re-
spect to the contribution of software to
accidents. System components (includ-
ing software) can operate 100% reliably
and accidents may still result, usually
from unsafe interactions among the
system components. In addition, the
larger environment (including social
policies and decision making) beyond
the system boundaries is important.

A cyber-human-physical control loop.

Controller(s)

Cyber-Human

Physical

Controlled Process

Actuator(s) Sensor(s)

(Human and/or Computer)

Model (beliefs) about the state
of the controlled process Feedback

Signal

Physical
Feedback

Control
Signal

Physical
Control Signal

FEBRUARY 2020 | VOL. 63 | NO. 2 | COMMUNICATIONS OF THE ACM 27

viewpoints

Misconception #4:
Software Can Be Shown
to Be Safe by Testing, Simulation,
or Standard Formal Verification
Testing: Exhaustive testing of software
is impossible. The problem can be ex-
plained by examining what “exhaus-
tive” might mean in the domain of soft-
ware testing:

˲˲ Inputs: The domain of possible

software logic and humans making
cognitively complex decisions.

We need to stop pretending that
these probabilistic estimates of safety
have anything to do with reality, and
not base our confidence about safety
on them. I have examined hundreds of
accident reports in my 40 years in sys-
tem safety engineering. Virtually every
accident involved a system with a prob-
abilistic risk assessment that showed
the accident could/would not occur,
usually exactly in the way it did happen.

Misconception 3:
The Safety of Components in
a Complex System Is a Useful
Concept; That Is, We Can
Model or Analyze the Safety
of Software in Isolation from
the Entire System Design
While the components of a more com-
plex system can have hazards (states
that can lead to some type of loss),
these are usually not of great interest
when the component is not the entire
system of interest. For example, the
valve in a car or an aircraft can have
sharp edges that could potentially lead
to abrasions or cuts to those handling
it. But the more interesting hazards are
always at the system level—the sharp
corners on the valve do not impact the
hazards involved in the role of the valve
in the inadvertent release of nuclear ra-
diation from a nuclear power plant or
the release of noxious chemicals from a
chemical plant (for example).

In other words, safety is primarily
a system property and the hazards of
interest are system-level hazards. The
component’s behavior can, of course,
contribute to system hazards, but its
contribution cannot be determined
without considering the behavior of
all the system components as a whole.
Potentially effective approaches to
safety engineering involve identifying
the system hazards and then eliminat-
ing or, if that is not possible, prevent-
ing or mitigating them at the system
level. The system hazards can usually
be traced down to behavior of the sys-
tem components, but the reverse is
not true. One cannot show that each
component is safe in isolation and
then use that analysis to conclude the
system as a whole will be safe.

Another way of saying this is that
a system component failure is not

equivalent to a hazard. Component
failures can lead to system hazards,
but a component failure is not neces-
sary for a hazard to occur. In addition,
even if a component failure occurs,
it may not be able to contribute to a
system hazard. This is simply another
way of clarifying misconception #2
concerning the difference between
reliability and safety.

Some Navy aircraft were ferrying missiles from
one point to another. One pilot executed a
planned test by aiming at the aircraft in front
(as he had been told to do) and firing a dummy
missile. Apparently, nobody knew that the
“smart” software was designed to substitute a
different missile if the one that was commanded
to be fired was not in a good position. In this case,
there was an antenna between the dummy missile
and the target, so the software decided to fire a
live missile located in a different (better) position
instead. What aircraft component(s) failed here?

This loss involved the Mars Polar Lander. It is
necessary to slow the spacecraft down to land
safely. Ways to do this include using the Martian
atmosphere, a parachute and descent engines
(controlled by software). As soon as the spacecraft
lands, the software must immediately shut
down the descent engines to avoid damage to
the spacecraft. Some very sensitive sensors on
the landing legs provide this information. But it
turned out that noise (sensor signals) is generated
when the legs are deployed. This expected
behavior was not in the software requirements.
Perhaps it was not included because the software
was not supposed to be operating at this time, but
the software engineers decided to start early to
even out the load on the processor. The software
thought the spacecraft had landed and shut down
the descent engines while the spacecraft was
still 40 meters about the planet surface. Which
spacecraft components failed here?

It is dangerous for an aircraft’s thrust reversers
(which are used to slow the aircraft after it has
touched down) to be activated when the aircraft
is still in the air. Protection is designed into
the software to prevent a human pilot from
erroneously activating the thrust reversers when
the aircraft is not on the ground. Without going
into the details, some of the clues for the software
to determine the plane has landed are weight
on wheels and wheel spinning rate, which for a
variety of reasons did not hold in this case. For
example, the runway was very wet and the wheels
hydroplaned. As a result, the pilots could not
activate the thrust reversers and the aircraft ran
off the end of the runway into a small hill. What
aircraft components failed here?

Three Examples of
Accidents Due to Unsafe
Interactions between
Systems Components

28 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

viewpoints

complex physical systems, that is, the
controlled process shown in the figure
in this column.

Conclusion
All of this leads to the conclusion that
the most effective approach to deal-
ing with safety of computer-controlled
systems is to focus on creating the safe-
ty-related requirements. System and
software requirements development
are necessarily a system engineering
problem, not a software engineering
problem. The solution is definitely not
in building a software architecture (de-
sign) and generating the requirements
later, as has been surprisingly suggest-
ed by some computer scientists.7

Some features of a potential solution
can be described. It will likely involve us-
ing a model or definition of the system.
Standard physical or logical connection
models will not help. For most such
models, analysis can identify only com-
ponent failures. In some, it might be
possible to identify component failures
leading to hazards, but this is the easy
part of the problem and omits software
and humans. Also, to be most effec-
tive, the model should include control-
lers that are humans and organizations
along with social controls. Most inter-
esting systems today are sociotechnical.

Using a functional control model,
analysis tools can be developed to ana-
lyze the safety of complex systems. In-
formation on an approach that is being
used successfully on the most complex
systems being developed today can
be found in Engineering a Safer World1
and on the related website http://psas.
scripts.mit.edu/home/.	

References
1.	 Leveson, N.G. Engineering a Safer World. MIT Press, 2012.
2.	 Leveson, N.G. Safeware: System Safety and

Computers. Addison-Wesley, 1995.
3.	 Leveson, N.G. The role of software in spacecraft

accidents. AIAA Journal of Spacecraft and Rockets
41, 4 (July 2004).

4.	 Leveson, N.G. and Thomas, J.P. STPA Handbook
(2018); http://psas.scripts.mit.edu/home/materials/

5.	 Leveson, N.G. et al. Requirements specification for
process-control systems. IEEE Transactions on
Software Engineering SE-20, 9 (Sept. 1994).

6.	 Lutz, R. Analyzing software requirements errors in
safety-critical, embedded systems. In Proceedings
of the International Conference on Software
Requirements. IEEE (Jan. 1992).

7.	 National Research Council. Software for Dependable
Systems, 2007.

Nancy Leveson (leveson@mit.edu) is a professor of
Aeronautics and Astronautics at the Massachusetts
Institute of Technology (MIT), Cambridge, MA, USA.

Copyright held by author.

inputs to a software system includes
both valid and invalid inputs, potential
time validity of inputs (an input may be
valid at a certain time but not at other
times), and all the possible sequences
of inputs when the design includes his-
tory (which is almost all software). This
domain is too large to cover any but a
very small fraction of the possible in-
puts in a realistic timeframe.

˲˲ System states: Like the number of
potential inputs, the number of states
in these systems is enormous. For ex-
ample, TCAS—an aircraft collision
avoidance system—was estimated to
have 1040 possible states.5 Note that col-
lision avoidance is only one small part
of the automation that will be required
to implement autonomous (and even
non-autonomous) vehicles.

˲˲ Coverage of the software design:
Taking a simple measure of coverage
like “all the paths through the software
have been executed at least once dur-
ing testing” involves enormous and im-
practical amounts of testing time and
does not even guarantee correctness,
let alone safety.

˲˲ Execution environments: In addi-
tion to the problems listed so far, the
execution environment becomes signif-
icant when the software outputs are re-
lated to real-world states (the controlled
process and its environment) that may
change frequently, such as weather,
temperature, altitude, pressure, and so
on. The environment includes the social
policies under which the system is used.

In addition, as seen in the much-
repeated Dijkstra quote, testing can
show only the presence of errors, not
their absence.

Finally, and perhaps most impor-
tant, even if we could exhaustively test
the software, virtually all accidents in-
volving software stem from unsafe re-
quirements.2,6 Testing can show only
the consistency of the software with
the requirements, not whether the re-
quirements are flawed. While testing
is important for any system, including
software, it cannot be used as a mea-
sure or validation of acceptable safety.
Moving this consistency analysis to a
higher level (validation) only shifts the
problem, but does not solve it.

Simulation: All simulation depends
on assumptions about the environ-
ment in which the system will execute.
Autonomous cars have now been sub-

jected to billions of cases in simula-
tors, and have still been involved in ac-
cidents as soon as they are used on real
roads. The problems described for test-
ing apply here, but the larger problem is
that accidents occur when the assump-
tions used in development and in the
simulation do not hold. Another way of
saying this is that accidents occur be-
cause of what engineers call “unknown
unknowns” in engineering design. We
have no way to determine what the un-
known unknowns are. Therefore, simu-
lation can show only that we have han-
dled the things we thought of, not the
ones we did not think about, assumed
were impossible, or unintentionally left
out of the simulation environment.

Formal verification: Virtually all ac-
cidents involving software stem from
unsafe requirements, not implemen-
tation errors. Of course, it is possible
that errors in the implementation of
safe requirements could lead to an ac-
cident; however, in the hundreds of
software-related accidents I have seen
over 40 years, none have involved er-
roneous implementation of correct,
complete, and safe requirements.
When I look at accidents where it is
claimed the implemented software
logic has led to the loss, I always find
the software logic flaws stem from a
lack of adequate requirements. Of the
three examples shown in the sidebar in
this column, none of these accidents
(nor the hundreds of others that I have
seen) would have been prevented using
formal verification methods. Formal
verification (or even formal valida-
tion) can show only the consistency of
two formal models. Complete discrete
mathematical models do not exist of

System and software
requirements
development are
necessarily a system
engineering problem,
not a software
engineering problem.

