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ROM W HAT I  have seen, heard, 
and read, confusion and mis-
information abound about 
software and safety. I have 
worked in this area for nearly 

40 years, starting around the time when 
computers were beginning to be intro-
duced into the control of safety-critical 
systems. I want to share what I have 
learned. Too many incorrect beliefs are 
being promoted, which are inhibiting 
progress and, in some cases, unneces-
sarily costing lives. This column clari-
fies this topic so that the solutions we 
propose are more likely to have a sig-
nificant impact on safety.

With only a few exceptions, software 
was not used to directly control safety-
critical systems until approximately 
1980, although it was used to provide 
computational power for complex sys-
tems, such as spacecraft. Direct control 
was very limited, but the hesitation has 
now almost completely disappeared 
and software is used to control most 
systems, including physical systems 
that could involve potentially large and 
even catastrophic losses.

Originally, “embedded software” 
was used to denote these new control 
roles for software, but more recently 
the term “cyber-physical systems” has 
come into vogue. The figure here shows 
a standard cyber-physical control loop. 
Note that, for some reason, cyber-phys-
ical systems usually forget that control 
can be, and often is, provided by hu-
mans. In a little more realistic model 

(but more complicated than necessary 
here), there would be two controllers 
where a human controller is providing 
control signals to a computer control-
ler. To cover more than the unusual 
case where there are no human con-
trollers, we should actually talk about 
“cyber-human-physical” systems. Even 
so-called “unmanned” air vehicles, for 
example, usually have a human con-
troller on the ground. A more realistic 
and complete model is provided in Ap-
pendix G of the STPA Handbook.4

As illustrated in the figure here, a 
controller (or controllers, which may be 
human, automated or both) compares 
the current state of the controlled pro-
cess with the control goals and sends 
control signals to an actuator, which in 
turn may be automated or human. The 
actuators translate the control signals 

into physical actions on the controlled 
process. Sensors provide feedback 
about the state of the controlled pro-
cess to the controller so it can deter-
mine the state of the controlled system 
and decide whether further control 
signals are needed. The actuators and 
sensors may be software, hardware, 
physical devices, or humans.

In order to decide on what control 
actions to provide in order to satisfy 
its goals (requirements), the control-
ler must have a model (often called 
a mental model when the controller 
is human) of the current state of the 
controlled process. The most common 
cause of accidents stemming from un-
safe controller action is that the model 
of the controlled process is incorrect: 
the pilot thinks the aircraft is not in 
a stall when it is and does not issue a 

Inside Risks 
Are You Sure Your Software 
Will Not Kill Anyone? 
Using software to control potentially unsafe systems requires  
the use of new software and system engineering approaches.
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As a simple, real-world example, con-
sider going out to the middle of a large 
deserted area, pointing a gun away 
from oneself, and firing. If there is no-
body or nothing in the vicinity, the gun 
could be considered to be both reliable 
and safe. Consider, however, doing the 
same thing in a crowded mall. The gun 
has not changed, the gun’s reliability 
has not changed, and the action (pull-
ing the trigger) has not changed. But 
the safety certainly has.

The accompanying sidebar high-
lights three examples out of hundreds 
of similar losses.4 Considering reliabil-
ity only at the system level (instead of 
the component level) does not help. 
Complex systems almost always have 
many requirements (or goals) while 
there are constraints on how those 
goals can be achieved. As an example, 
a chemical plant may very reliably pro-
duce chemicals (the goal or mission of 
the plant) while at the same time pol-
luting the environment around the 
plant. The plant may be highly reliable 
in producing chemicals but not safe. 
Most safety-critical systems have both 
mission (non-safety) requirements and 
safety constraints on how the mission 
or goals can be achieved. A “system fail-
ure” or inability to satisfy its require-
ments is not equivalent to a hazard or 
an accident. One exception is if safety 
is the only goal of the system; however, 
even for systems such as air traffic con-
trol, there are usually non-safety goals 
such as optimizing throughput in addi-
tion to the safety goals.

A common approach to assess-
ing safety is to use probabilistic risk 
assessment to assess the reliability 
of the components and then to com-
bine these values to obtain the sys-
tem reliability. Besides the fact that 
this assessment ignores accidents 
that are caused by the interactions 
of “unfailed” components (see Mis-
conception 3), most of these assess-
ments include only random hardware 
failures and assume independence 
between the failures. Therefore, they 
provide anything close to a real safety 
assessment when the systems are just 
hardware and relatively simple. Such 
systems existed 50+ years ago when 
these probabilistic risk methods were 
developed; virtually all systems today 
(particularly complex ones) contain 
non-stochastic components including 

required control action to escape from 
the stall, the driver does not see the 
pedestrian and does not brake in time 
to prevent a collision, the weapon con-
troller thinks that friendly troops are 
the enemy and initiates friendly fire. 
The pilot, driver, and weapon control-
ler can be human or computerized, or 
a combination of both.

Accidents involving computers (and 
humans) most often occur when their 
models of the current state of the con-
troller do not match the actual state of 
the controlled process; the controller 
issues a control action that is appropri-
ate for a different state but not the one 
that currently exists. As an example, 
the software controller thinks the air-
craft is in a stall when it is not and is-
sues a control action to escape the non-
existent stall only to inadvertently put 
the aircraft into a dangerous state.

Starting from this foundation, let’s 
consider some of the most common 
misconceptions with respect to soft-
ware and safety.

Misconception 1:  
Software Itself Can Be Unsafe
Software cannot catch on fire or ex-
plode; it is an abstraction. Only physical 
entities can inflict damage to life and 
property: physical energy is usually re-
quired to inflict physical harm. In the 
figure in this column, software sends 
control signals to a physical process, 
which may have physical effects. Nucle-
ar power plants can release radiation, 
chemical plants can release toxins, 
weapon systems can explode or inadver-
tently target a friendly object, for 
exsmple. One old model of an accident 
describes it as uncontrolled energy. 

Software does not release energy; it 
simply releases bits, which can be used 
to send a control signal.

To avoid misconceptions that arise 
from the term “software safety,” some-
times safety engineers speak of “soft-
ware system safety,” to denote the 
contribution of software behavior to a 
dangerous process. An alternative con-
ception is to speak of the contribution 
of software to system safety. Either way, 
by considering software in isolation, 
without including the controlled physi-
cal process, it is not possible to assure 
anything about the safety of the system 
the software is controlling.

The Ariane 4 software Inertial Refer-
ence System was perfectly safe in that 
launcher. However, when reused in the 
Ariane 5, it led to an explosion and loss 
of a satellite. Many accidents involve 
reused software.3 It is not the software 
that is unsafe, but the entire system 
controlled by the software.

Misconception 2:  
Reliable Systems Are Safe;  
That Is, Reliability and Safety 
Are Essentially the Same Thing. 
Reliability Assessment Can 
Therefore Act as a Proxy for Safety
Reliability and safety are different sys-
tem properties and sometimes even 
conflicting. This is true also with re-
spect to the contribution of software to 
accidents. System components (includ-
ing software) can operate 100% reliably 
and accidents may still result, usually 
from unsafe interactions among the 
system components. In addition, the 
larger environment (including social 
policies and decision making) beyond 
the system boundaries is important. 

A cyber-human-physical control loop.

Controller(s)

Cyber-Human

Physical

Controlled Process

Actuator(s) Sensor(s)

(Human and/or Computer)

Model (beliefs) about the state 
of the controlled process Feedback

Signal

Physical
Feedback

Control
Signal

Physical 
Control Signal



FEBRUARY 2020  |   VOL.  63  |   NO.  2  |   COMMUNICATIONS OF THE ACM     27

viewpoints

Misconception #4:  
Software Can Be Shown  
to Be Safe by Testing, Simulation, 
or Standard Formal Verification
Testing: Exhaustive testing of software 
is impossible. The problem can be ex-
plained by examining what “exhaus-
tive” might mean in the domain of soft-
ware testing:

˲˲ Inputs: The domain of possible 

software logic and humans making 
cognitively complex decisions.

We need to stop pretending that 
these probabilistic estimates of safety 
have anything to do with reality, and 
not base our confidence about safety 
on them. I have examined hundreds of 
accident reports in my 40 years in sys-
tem safety engineering. Virtually every 
accident involved a system with a prob-
abilistic risk assessment that showed 
the accident could/would not occur, 
usually exactly in the way it did happen.

Misconception 3:  
The Safety of Components in 
a Complex System Is a Useful 
Concept; That Is, We Can 
Model or Analyze the Safety 
of Software in Isolation from 
the Entire System Design
While the components of a more com-
plex system can have hazards (states 
that can lead to some type of loss), 
these are usually not of great interest 
when the component is not the entire 
system of interest. For example, the 
valve in a car or an aircraft can have 
sharp edges that could potentially lead 
to abrasions or cuts to those handling 
it. But the more interesting hazards are 
always at the system level—the sharp 
corners on the valve do not impact the 
hazards involved in the role of the valve 
in the inadvertent release of nuclear ra-
diation from a nuclear power plant or 
the release of noxious chemicals from a 
chemical plant (for example).

In other words, safety is primarily 
a system property and the hazards of 
interest are system-level hazards. The 
component’s behavior can, of course, 
contribute to system hazards, but its 
contribution cannot be determined 
without considering the behavior of 
all the system components as a whole. 
Potentially effective approaches to 
safety engineering involve identifying 
the system hazards and then eliminat-
ing or, if that is not possible, prevent-
ing or mitigating them at the system 
level. The system hazards can usually 
be traced down to behavior of the sys-
tem components, but the reverse is 
not true. One cannot show that each 
component is safe in isolation and 
then use that analysis to conclude the 
system as a whole will be safe.

Another way of saying this is that 
a system component failure is not 

equivalent to a hazard. Component 
failures can lead to system hazards, 
but a component failure is not neces-
sary for a hazard to occur. In addition, 
even if a component failure occurs, 
it may not be able to contribute to a 
system hazard. This is simply another 
way of clarifying misconception #2 
concerning the difference between 
reliability and safety.

Some Navy aircraft were ferrying missiles from 
one point to another. One pilot executed a 
planned test by aiming at the aircraft in front 
(as he had been told to do) and firing a dummy 
missile. Apparently, nobody knew that the 
“smart” software was designed to substitute a 
different missile if the one that was commanded 
to be fired was not in a good position. In this case, 
there was an antenna between the dummy missile 
and the target, so the software decided to fire a 
live missile located in a different (better) position 
instead. What aircraft component(s) failed here?

This loss involved the Mars Polar Lander. It is 
necessary to slow the spacecraft down to land 
safely. Ways to do this include using the Martian 
atmosphere, a parachute and descent engines 
(controlled by software). As soon as the spacecraft 
lands, the software must immediately shut 
down the descent engines to avoid damage to 
the spacecraft. Some very sensitive sensors on 
the landing legs provide this information. But it 
turned out that noise (sensor signals) is generated 
when the legs are deployed. This expected 
behavior was not in the software requirements. 
Perhaps it was not included because the software 
was not supposed to be operating at this time, but 
the software engineers decided to start early to 
even out the load on the processor. The software 
thought the spacecraft had landed and shut down 
the descent engines while the spacecraft was 
still 40 meters about the planet surface. Which 
spacecraft components failed here?

It is dangerous for an aircraft’s thrust reversers 
(which are used to slow the aircraft after it has 
touched down) to be activated when the aircraft 
is still in the air. Protection is designed into 
the software to prevent a human pilot from 
erroneously activating the thrust reversers when 
the aircraft is not on the ground. Without going 
into the details, some of the clues for the software 
to determine the plane has landed are weight 
on wheels and wheel spinning rate, which for a 
variety of reasons did not hold in this case. For 
example, the runway was very wet and the wheels 
hydroplaned. As a result, the pilots could not 
activate the thrust reversers and the aircraft ran 
off the end of the runway into a small hill. What 
aircraft components failed here?

Three Examples of 
Accidents Due to Unsafe 
Interactions between 
Systems Components
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complex physical systems, that is, the 
controlled process shown in the figure 
in this column.

Conclusion
All of this leads to the conclusion that 
the most effective approach to deal-
ing with safety of computer-controlled 
systems is to focus on creating the safe-
ty-related requirements. System and 
software requirements development 
are necessarily a system engineering 
problem, not a software engineering 
problem. The solution is definitely not 
in building a software architecture (de-
sign) and generating the requirements 
later, as has been surprisingly suggest-
ed by some computer scientists.7

Some features of a potential solution 
can be described. It will likely involve us-
ing a model or definition of the system. 
Standard physical or logical connection 
models will not help. For most such 
models, analysis can identify only com-
ponent failures. In some, it might be 
possible to identify component failures 
leading to hazards, but this is the easy 
part of the problem and omits software 
and humans. Also, to be most effec-
tive, the model should include control-
lers that are humans and organizations 
along with social controls. Most inter-
esting systems today are sociotechnical.

Using a functional control model, 
analysis tools can be developed to ana-
lyze the safety of complex systems. In-
formation on an approach that is being 
used successfully on the most complex 
systems being developed today can 
be found in Engineering a Safer World1 
and on the related website http://psas.
scripts.mit.edu/home/.	
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inputs to a software system includes 
both valid and invalid inputs, potential 
time validity of inputs (an input may be 
valid at a certain time but not at other 
times), and all the possible sequences 
of inputs when the design includes his-
tory (which is almost all software). This 
domain is too large to cover any but a 
very small fraction of the possible in-
puts in a realistic timeframe.

˲˲ System states: Like the number of 
potential inputs, the number of states 
in these systems is enormous. For ex-
ample, TCAS—an aircraft collision 
avoidance system—was estimated to 
have 1040 possible states.5 Note that col-
lision avoidance is only one small part 
of the automation that will be required 
to implement autonomous (and even 
non-autonomous) vehicles.

˲˲ Coverage of the software design: 
Taking a simple measure of coverage 
like “all the paths through the software 
have been executed at least once dur-
ing testing” involves enormous and im-
practical amounts of testing time and 
does not even guarantee correctness, 
let alone safety.

˲˲ Execution environments: In addi-
tion to the problems listed so far, the 
execution environment becomes signif-
icant when the software outputs are re-
lated to real-world states (the controlled 
process and its environment) that may 
change frequently, such as weather, 
temperature, altitude, pressure, and so 
on. The environment includes the social 
policies under which the system is used.

In addition, as seen in the much-
repeated Dijkstra quote, testing can 
show only the presence of errors, not 
their absence.

Finally, and perhaps most impor-
tant, even if we could exhaustively test 
the software, virtually all accidents in-
volving software stem from unsafe re-
quirements.2,6 Testing can show only 
the consistency of the software with 
the requirements, not whether the re-
quirements are flawed. While testing 
is important for any system, including 
software, it cannot be used as a mea-
sure or validation of acceptable safety. 
Moving this consistency analysis to a 
higher level (validation) only shifts the 
problem, but does not solve it.

Simulation: All simulation depends 
on assumptions about the environ-
ment in which the system will execute. 
Autonomous cars have now been sub-

jected to billions of cases in simula-
tors, and have still been involved in ac-
cidents as soon as they are used on real 
roads. The problems described for test-
ing apply here, but the larger problem is 
that accidents occur when the assump-
tions used in development and in the 
simulation do not hold. Another way of 
saying this is that accidents occur be-
cause of what engineers call “unknown 
unknowns” in engineering design. We 
have no way to determine what the un-
known unknowns are. Therefore, simu-
lation can show only that we have han-
dled the things we thought of, not the 
ones we did not think about, assumed 
were impossible, or unintentionally left 
out of the simulation environment.

Formal verification: Virtually all ac-
cidents involving software stem from 
unsafe requirements, not implemen-
tation errors. Of course, it is possible 
that errors in the implementation of 
safe requirements could lead to an ac-
cident; however, in the hundreds of 
software-related accidents I have seen 
over 40 years, none have involved er-
roneous implementation of correct, 
complete, and safe requirements. 
When I look at accidents where it is 
claimed the implemented software 
logic has led to the loss, I always find 
the software logic flaws stem from a 
lack of adequate requirements. Of the 
three examples shown in the sidebar in 
this column, none of these accidents 
(nor the hundreds of others that I have 
seen) would have been prevented using 
formal verification methods. Formal 
verification (or even formal valida-
tion) can show only the consistency of 
two formal models. Complete discrete 
mathematical models do not exist of 

System and software 
requirements 
development are 
necessarily a system 
engineering problem, 
not a software 
engineering problem.


