
Value-Based Software Engineering: Seven Key Elements

and Ethical Considerations

Barry Boehm
USC-CSE-2005-503, February 2005

Copyright USC-CSE 2005

Abstract: This chapter presents seven key elements that provide candidate
foundations for value-based software engineering:

1. Benefits Realization Analysis
2. Stakeholder Value Proposition Elicitation and Reconciliation
3. Business Case Analysis
4. Continuous Risk and Opportunity Management
5. Concurrent System and Software Engineering
6. Value-Based Monitoring and Control
7. Change as Opportunity

Using a case study, it then shows how some of these elements can be used to
incorporate ethical considerations into daily software engineering practice.

Keywords: benefits realization, business case analysis, cost-benefit analysis,
investment analysis, return on investment, risk management, stakeholder values,
software economics, software engineering ethics, value-based software engineering.

15.1 Benefits Realization Analysis

Benefits Realized

Many software projects fail by succumbing to the “Field of Dreams” syndrome.
This refers to the American movie in which a Midwestern farmer has a dream that if
he builds a baseball field on his farm, the legendary players of the past will appear and
play on it (“Build the field and the players will come”).

In The Information Paradox (Thorp, 1998), John Thorp discusses the paradox that

organizations’ success in profitability or market capitalization do not correlate with
their level of investment in information technology (IT). He traces this paradox to an
IT and software analogy of the “Field of Dreams” syndrome: “Build the software and
the benefits will come”.

To counter this syndrome, Thorp and his company, the DMR Consulting Group,
developed a Benefits Realization Approach (BRA) for determining and coordinating
the other initiatives besides software and IT system development that are needed in
order for the organization to realize the potential IT system benefits. The most
significant of these features, the Results Chain, is discussed next.

Results Chain

Figure 15.1 shows a simple Results Chain provided as an example in The

Information Paradox. It establishes a framework linking Initiatives that consume
resources (e.g., implement a new order entry system for sales) to Contributions (not
delivered systems, but their effects on existing operations) and Outcomes, which may
lead either to further contributions or to added value (e.g., increased sales). A
particularly important contribution of the Results Chain is the link to Assumptions,
which condition the realization of the Outcomes. Thus, in Figure 15.1, if order-to-
delivery time turns out not to be an important buying criterion for the product being
sold, (e.g., for stockable commodities such as soap and pencils), the reduced time to
deliver the product will not result in increased sales.

The Results Chain is a valuable framework by which software project members can

work with their clients to identify additional non-software initiatives that may be
needed to realize the potential benefits enabled by the software/IT system initiative.
These may also identify some additional success-critical stakeholders who need to be
represented and “bought into” the shared vision.

INITIATIVE OUTCOME OUTCOME

ASSUMPTION

Contribution Contribution

Implement a new
order entry system

Reduced time to
process order

Reduce order-processing cycle
(intermediate outcome)

Reduce time to
deliver product

Increased sales

Order to delivery time is an
important buying criterion

Figure 15.1. Benefits Realization Approach Results Chain

For example, the initiative to implement a new order entry system may reduce the
time required to process orders only if some additional initiatives or system features
are pursued to convince the sales people that the new system will be good for their
careers and to train them in how to use the system effectively. For example, if the

order entry-system is so efficiency-optimized that it doesn’t keep track of sales credits,
the sales people will fight using it.

Further, the reduced order processing cycle will reduce the time to deliver products

only if additional initiatives are pursued to coordinate the order entry system with the
order fulfillment system. Some classic cases where this didn’t happen were the late
deliveries of Hershey’s Halloween candy (Carr, 2002) and Toys’R’Us’ Christmas
toys.

Such additional initiatives need to be added to the Results Chain. Besides

increasing its realism, this also identifies additional success-critical stakeholders (sales
people and order fulfillment people) who need to be involved in the system definition
and development process. The expanded Results Chain involves these stakeholders
not just in a stovepipe software project to satisfy some requirements, but in a program
of related software and non-software initiatives focused on value-producing end
results.

15.2 Stakeholder Value Proposition Elicitation and Reconciliation

It would be convenient if all the success-critical stakeholders had readily

expressible and compatible value propositions that could easily be turned into a set of
objectives for each initiative and for the overall program of initiatives. “Readily
expressible” is often unachievable because the specifics of stakeholders’ value
propositions tend to be emergent through experience rather than obtainable through
surveys. In such cases, synthetic-experience techniques such as prototypes, scenarios,
and stories can accelerate elicitation.

Readily compatible stakeholder value propositions can be achievable in situations
of long-term stakeholder mutual understanding and trust. However, in new situations,
just considering the most frequent value propositions or success models of the most
frequent project stakeholders (users, acquirers, developers, maintainers) shows that
these are frequently in conflict and must be reconciled.

Stakeholders’ Success Model Clashes

For example, Figure 15.2 shows a “spider web” of the most frequent “model
clashes” among these stakeholders’ success models that can cause projects to fail.

 Figure 15.2. Value Proposition Model-Clash Spiderweb diagram.

- The red lines show model clashes from the MasterNet system.

The left- and right-hand sides of Figure 15.2 show these most-frequent success

models. For example, users want many features, freedom to redefine the feature set at
any time, compatibility between the new system and their existing systems, and so on.

However, the Spiderweb diagram shows that these user success models can clash
with other stakeholders’ success models. For example, the users’ “many features”
product-oriented success model clashes with the acquirers’ “limited development
budget and schedule” property-oriented success model, and with the developer’s
success model, “ease of meeting budget and schedule.”

The developer has a success model, “freedom of choice: COTS/reuse” that can
often resolve budget and schedule problems. But the developer’s choice of COTS or
reused components may be incompatible with the users’ and maintainers’ other
applications, causing two further model clashes. Further, the developer’s reused
software may not be easy to maintain, causing an additional model clash with the
maintainers.

The red lines in Figure 15.2 show the results of one of the analyses performed in
constructing and refining the major model clash relationships. It determined the major
model clashes in the Bank of America Master Net development, one of several major
project failures analyzed. Further explanations are in (Boehm et al., 2000) and (Al-
Said, 2003).

Given the goodly number of model clashes in Figure 15.2 (and there are potentially
many more), the task of reconciling them may appear formidable. However, there are
several effective approaches for stakeholder value proposition reconciliation, such as:

• Expectations management. Often, just becoming aware of the number of potential
stakeholder value proposition conflicts that need to be resolved will cause
stakeholders to relax their less-critical levels of desire. Other techniques such as
lessons-learned retrospectives, well-calibrated cost models, and “simplifier and
complicator” lists help stakeholders better understand which of their desired
capabilities are infeasible with respect to budget, schedule, and technology
constraints. Good examples are in Chapter 34 of this book.

• Visualization and tradeoff-analysis techniques. Frequently, prototypes,
scenarios, and estimation models enable stakeholders to obtain a better mutual
understanding of which aspects of an application are most important and
achievable. Good examples are in Chapters 12, 13, and 35.

• Prioritization. Having stakeholders rank-order or categorize the relative priorities
of their desired capabilities will help determine which combination of capabilities
will best satisfy stakeholders’ most critical needs within available resource
constraints. Various techniques such as pairwise comparison and scale-of-10
ratings of relative importance and difficulty are helpful aids to prioritization.
Good examples are in Chapters 22 and 36.

• Groupware. Some of those prioritization aids are available in groupware tools,
along with collaboration-oriented support for brainstorming, discussion, and win-
win negotiation of conflict situations. Good examples are in Chapters 35 and 36.

• Business case analysis. Determining which capabilities provide the best return-on-
investment can help stakeholders prioritize and reconcile their value propositions.
Business case analysis is summarized next, and discussed in more detail in
Chapter 11.

15.3 Business Case Analysis

In its simplest form, business case analysis involves determining the relative
financial costs, benefits, and return on investment (ROI) across a system’s life-cycle
as:

ROI = Benefits – Costs
 Costs

Since costs and benefits may occur at different times, the business case analysis
will usually discount future cash flows based on likely rates of interest, so that all of
cash flows are referenced to a single point in time (usually the present, as in Present
Value).

One can then compare two decision options A and B in terms of their ROI profiles
versus time. In Figure 15.3, for example, Option A’s ROI becomes positive sooner
than Option B’s ROI, but its longer-term ROI is lower. The stakeholders `can then
decide whether the longer wait for a higher ROI in Option B is preferable to the
shorter wait for a lower ROI in Option A. Option Rapid-B illustrates why
stakeholders are interested in rapid application development. If Rapid-B can be
developed in half the time, it will be much preferable to either of Options A or
original-B.

 Figure 15.3. Example of Business Case Analysis Results
Unquantifiable Benefits, Uncertainties, and Risk

Two additional factors may be important in business case analysis. One involves
unquantifiable benefits; the other involves uncertainties and risk.

In some cases, Option A might be preferred to Option B or even Rapid-B if it
provided additional benefits that may be difficult to quantify, such as controllability,
political benefits, or stakeholder good will. These can sometimes be addressed by
such techniques as multiple-criterion decision-making or utility functions involving
stakeholders’ preferences for financial or non-financial returns.

In other cases, the benefit flows in Figure 15.3 may be predicated on uncertain
assumptions. They might assume, for example, that the Option B product will be the
first of its kind to enter the marketplace and will capture a large market share.

 ROI =
Benefits-Costs
 Costs

Option B

Time

Option B-
Rapid

Option A

However, if two similar products enter the marketplace first, then the payoff for
Option B may be even less than that for Option A.

If the profitability of early competitor marketplace entry can be quantified, it can
then be used to determine the relative value of the rapid development Option Rapid-B.
This value can then be used to determine the advisability of adopting practices that
shorten schedule at some additional cost. An example is pair programming: empirical
studies indicate that paired programmers will develop software in 60-70% of the
calendar time required for an individual programmer, but thereby requiring 120-140%
of the cost of the individual programmer.

If the profitability of early competitor marketplace entry is unknown, this means
that making a decision between the cheaper Option B and the faster Option Rapid-B
involves considerable uncertainty and risk. It also means that there is a value in
performing competitor analysis to determine the probability of early competitor
marketplace entry, or of buying information to reduce risk. This kind of value-of-
information analysis can be performed via statistical decision theory; a discussion and
examples of its applicability to software decision making are provided in Chapter 21.
An excellent overall introduction to software business case analysis is (Reifer, 2002).
Good examples in this book are in Chapters 11, 22, 24, 41, and 44.

15.4 Continuous Risk and Opportunity Management

Risk analysis and risk management are not just early business case analysis

techniques; they pervade the entire information system life cycle. Risk analysis also
reintroduces the people factor into economic decision-making. Different people may
be more or less risk-averse, and will make different decisions in similar situations,
particularly when confronted with an uncertain mix of positive and negative outcomes.

For example, consider a programmer who is given 4 weeks to complete the
development of a software module. The programmer is given two choices. One is to
develop a new version of the module, which he is sure he can do in 4 weeks. The
other is to reuse a previously-developed module, for which there is an 80% chance of
finishing in 1 week and a 20% chance of finishing in 6 weeks. The expected duration
of this option is (.8)(1) + (.2)(6) = 2 weeks. This represents an expected time savings
of 2 weeks and a corresponding savings in expected effort or cost.

Understanding and Addressing People’s Utility Functions

In this situation, though, many risk-averse programmers would reject the reuse
option. They don’t want to be known as people who overrun schedules. Their utility
function would assign a much larger negative utility to overrunning the 4-week
schedule than the positive utility of finishing ahead of schedule. In terms of expected
utility, then, they would prefer the assured 4-week develop-a-new-module approach.

However, their boss may have preferred the reuse option, particularly if she had
invested resources in creating the reusable components, and if she could organize the
project to compensate for the uncertainties in module delivery schedules (e.g., via
modular architectures and daily builds rather than a pre-planned module integration
schedule). If so, she could revise the programmers’ incentive structure (rewarding
reuse independent of actual completion time) in a way that realigned their utility
functions and success models to be consistent with hers.

Thus, understanding and addressing people’s utility functions becomes a powerful
tool in reducing the risk of the overall project’s failure—or, from a complementary
perspective, in improving the opportunity for the overall project’s success. It means
that value-based software engineering is not a dry “manage by the numbers” approach,
but a highly people-oriented set of practices. And its treatment of uncertainty balances
negative risk considerations with positive opportunity considerations. Reconciling
stakeholders’ utility functions involves essentially the same approaches for
stakeholder value proposition elicitation and reconciliation as we discussed in Section
15.2.

Using Risk to Determine “How Much Is Enough”

 A current highly-debated issue is the use of plan-driven methods versus use of agile
methods such as Extreme Programming, Crystal Methods, Adaptive Software
Development, and Scrum (Highsmith, 2002). Recent workshop results involving plan-
driven and agile methods experts have indicated that hybrid plan-driven/methods are
feasible, and that risk analysis can be used to determine how much planning or agility
is enough for a given situation.

A central concept in risk management is the Risk Exposure (RE) involved in a
given course of action. It is determined by accessing the probability of loss P(L)
involved in a course of action and the corresponding size of loss S(L), and computing
the risk exposure as the expected loss: RE=P(L)*S(L). “Loss” can include profits,
reputation, quality of life, or other value-related attributes.

Figure 15.4 shows risk exposure profiles for an example e-services company with a
sizable installed base and desire for high assurance; a rapidly changing marketplace
and desire for agility and rapid value; and an internationally distributed development
team with mix of skill levels and a need for some level of documented plans.

- RE due to inadequate plans

- RE due to market share erosion

- Sum of risk exposures

low P(L): thorough plans
low S(L): minor problems

Time and Effort Invested in Plans

R
E

 =
 P

(L
)

*
S

(L
)

low P(L): few plan delays
low S(L): early value capture

high P(L): plan
breakage, delay
high S(L): value
capture delays

Sweet Spot

high P(L): inadequate plans
high S(L): major problems

(oversights, delays, rework)

Figure 15.4. Risk Exposure (RE) Profile: Planning Detail

The downward curve in Figure 15.4 shows the variation in risk exposure (RE) due

to inadequate plans, as a function of the level of investment the company puts into its
projects’ process and product plans. At the left, a minimal investment corresponds to
a high probability P(L) that the plans will have loss-causing gaps, ambiguities, and
inconsistencies. It also corresponds to a high S(L) that these deficiencies will cause
major project oversights, delays, and rework costs. At the right, the more thorough the
plans, the less P(L) that plan inadequacies will cause problems, and the smaller the
size S(L) of the associated losses.

The upward curve in Figure 15.4 shows the variation in RE due to market share
erosion through delays in product introduction. Spending little time in planning will
get at least a demo product into the marketplace early, enabling early value capture.
Spending too much time in planning will have a high P(L) due both to the planning
time spent, and to rapid changes causing delays via plan breakage. It will also cause a
high S(L), as the delays will enable others to capture most of the market share.

The upper curve in Figure 15.4 shows the sum of the risk exposures due to
inadequate plans and market share erosion. It shows that very low and very high
investments in plans have high overall risk exposures, and that there is a “Sweet Spot”
in the middle where overall risk exposure is minimized, indicating “how much
planning is enough?” for this company’s operating profile.

With the example company situation as a reference point, we can run comparative
risk exposure profiles of companies having different risk profiles. For example,
consider an e-services company with a small installed base and less need for high
assurance, a rapidly changing marketplace, and a collocated team of highly capable
and collaborative developers and customers. With this profile, the major change in
risk exposure from Figure 15.4 is that the size of rework loss from minimal plans is
much smaller due to the ability of the team to rapidly replan and refactor, and thus the
company’s Sweet Spot moves to the left toward agile methods.

As another example, consider a company in the plan-driven home ground, with a

more stable product line of larger, more safety-critical systems. Here, the major
difference from Figure 15.4 is a much higher size of rework loss from minimal plans,
and a resulting shift of the company’s Sweet Spot toward higher investments in plans.
Further discussion and illustration of these issues and more quantitative analyses are
provided in (Boehm and Turner, 2004).
 Similar analyses have shown that such risk analysis techniques can be used to
determine “how much is enough” for other key software engineering levels of activity,
such as testing, specification, prototyping, COTS evaluation, formal methods, or
documentation. Other good treatments of risk considerations are in Chapters 24, 33,
and 41.

15.5 Concurrent System and Software Engineering

 As we discussed in Chapter 21, the increasing pace of change in the information
technology marketplace is driving organizations toward increasing levels of agility in
their software development methods, while their products and services are
concurrently becoming more and more software-intensive. These trends also mean
that the traditional sequential approach to software development, in which systems
engineers determined software requirements and passed them to software engineers for
development, is increasingly risky to use.
 Increasingly, then, it is much more preferable to have systems engineers and
software engineers concurrently engineering the product’s or service’s operational
concept, requirements, architecture, life cycle plans and key sections of code.
Concurrent engineering is also preferable when system requirements are more
emergent from usage or prototyping than prespecifiable. It is further preferable when
the relative costs, benefits, and risks of commercial-off-the-shelf (COTS) software or
outsourcing decisions will simultaneously affect requirements, architectures, code,
plans, costs, and schedules. It is also essential in determining cost-value tradeoff
relationships in developing software product lines (Faulk et. al., 2000).

Relevant Process Models

For the future, then, concurrent spiral-type process models will increasingly be
preferred over sequential “waterfall”-type process models. Several are available, such
as the Evolutionary Spiral Process (SPC, 1992), the Rational Unified Process (RUP)
(Royce, 1998; Jacobson et al., 1999; Kruchten, 2001), and the MBASE/CeBASE
models (Boehm and Port, 2001; Boehm et al., 2002a). Some agile process models
such as Lean Software Development and Adaptive Software Development (Highsmith,
2002) also emphasize concurrent system and software engineering.

An important feature of concurrent process models is that their milestone pass-fail
criteria involve demonstrations of consistency and feasibility across a set of
concurrently-developed artifacts. For example, Table 15.1 shows the pass-fail criteria
for the anchor point milestones used in MBASE and RUP: Life Cycle Objectives
(LCO), Life Cycle Architecture (LCA), and Initial Operational Capability (IOC)
(Boehm and Port, 2001).

Table 15.1 LCO, LCA, and IOC Pass/Fail Criteria

These milestones work well as common commitment points across a variety of

process model variants because they reflect similar commitment points during one’s
lifetime. The LCO milestone is the equivalent of getting engaged, and the LCA
milestone is the equivalent of getting married. As in life, if you marry your
architecture in haste, you and your stakeholders will repent at leisure (if, in Internet
time, any leisure time is available). The third anchor point milestone, the Initial
Operational Capability (IOC), constitutes an even larger commitment: It is the
equivalent of having your first child, with all the associated commitments of care and
feeding of a legacy system.

Another important development in this area is the Capability Maturity Model-
Integrated (CMMI) (SEI, 2002; Ahern et. al, 2001). It integrates the previous
software-centric Software CMM (Paulk et al., 1994) with CMM’s for System
Engineering and for Integrated Product and Process Development. The CMMI (and

LCO LCA IOC

For at least one
architecture, a system built
to that architecture will:

• Support the core
operational concept

• Satisfy the core
requirements

• Be faithful to the
prototype(s)

• Be buildable within
the budgets and
schedules in the plan

• Show a viable
business case

• Have its key
stakeholders
committed to support
the Elaboration Phase
(to LCA)

For a specific detailed
architecture, a system built
to that architecture will:

• Support the
elaborated operational
concept

• Satisfy the elaborated
requirements

• Be faithful to the
prototype(s)

• Be buildable within
the budgets and
schedules in the plan

• Show a viable
business case

• Have all major risks
resolved or covered
by a risk management
plan

• Have its key
stakeholders
committed to support
the full life cycle

An implemented
architecture, an
operational system that
has:

• Realized the
operational concept

• Implemented the
initial operational
requirements

• Prepared a system
operation and support
plan

• Prepared the initial
site(s) in which the
system will be
deployed for
transition

• Prepared the users,
operators, and
maintainers to assume
their operational roles

its predecessor iCMM (FAA, 1997)) provides a process maturity assessment and
improvement framework, which organizations can use to evolve from sequential to
concurrent systems and software engineering approaches, in ways, which emphasize
integrated stakeholders teaming and reconciliation of stakeholder value propositions.
Further good examples of concurrent system and software engineering are in Chapters
12, 13, 22, 23, 31, 35, and 36.

15.6 Value-Based Monitoring and Control

A technique often used to implement project monitoring and control functions in

the software CMM or the CMMI is Earned Value Management. It works as shown in
Figure 15.5.

Develop/update

plans, BCWS

Perform
to plans

BCWP>
BCWS?

BCWP>
Cost ?

Determine corrective actions

Yes

No
No

Yes

BCWS: Budgeted Cost of Work Scheduled
BCWP: Budgeted Cost of Work Performed

Cost: Actual Cost of Work Performed

 Figure 15.5. “Earned Value” Feedback Process

The Earned Value Management process is generally good for tracking whether the
project is meeting its original plan. However, it becomes difficult to administer if the
project’s plan changes rapidly. More significantly, it has absolutely nothing to say
about the actual value being earned for the organization by the project’s results. A
project can be tremendously successful with respect to its cost-oriented “earned
value,” but an absolute disaster in terms of actual organizational value earned. This
frequently happens when the resulting product has flaws with respect to user
acceptability, operational cost-effectiveness, or timely market entry. Thus, it would be

preferable to have techniques which support monitoring and control of the actual value
to be earned by the project’s results.

Business-Case and Benefits-Realized Monitoring and Control

 A first step is to use the project’s business case (discussed in Section 15.3) as a
means of monitoring the actual business value of the capabilities to be delivered by the
project. This involves continuing update of the business case to reflect changes in
business model assumptions, market conditions, organizational priorities, and progress
with respect to enabling initiatives. Monitoring the delivered value of undelivered
capabilities is difficult; therefore, this approach works best when the project is
organized to produce relatively frequent increments of delivered capability.
 A related next step is to monitor assumptions and progress with respect to all of the
Initiatives and Outcomes involved in the project’s Results Chain discussed in Section
15.1 and shown in Figure 15.1. The suggested monitoring approach in (Thorp, 1998)
involves coloring in the degree to which Initiatives and Outcomes have been realized.
This can be extended to monitor Contributions and validity of Assumptions as well.
For example, monitoring the Contribution, “Reduce time to deliver product” in Figure
15.1 could uncover the problem that speeding up order entry will create more order
fulfillment delays unless a complementary order-fulfillment Initiative is established.
 The resulting value realization feedback process is shown in Figure 15.6. With
respect to the order-entry example just above, finding out that value was not being
realized via reduced delivery times would lead to some corrective action, most likely
the establishment of an order-fulfillment speedup Initiative. This would require
updates of the overall plans and business case, and new time-phased cost and benefit
flows to monitor.

Develop/update
business case;

time-phased cost,
benefit flows; plans

Perform
to plans

Value
being

realized?

Assump-

tions
still valid?

Determine corrective actions

Yes

Yes

No

No

Figure 15.6. Value Realization Feedback Process

A further option in the value realization feedback process involves adjusting the

value function to reflect progress with respect to the product’s production function as
illustrated in Figure 15.7. The usual economic production function is an S-shaped
curve in which the early “Investment” segment involves development of infrastructure
and architecture which does not directly generate benefits, but which is necessary for
realization of the benefits in the High-payoff and Diminishing-returns segment of the
curve. This means that tracking direct benefits realized usually produces pessimistic
results during the Investment segment of the curve. One can either manage
stakeholders’ expectations to accept low early benefit flows (as with the ROI profiles
in Figure 15.3), or use an alternative value function (the dotted line in Figure 15.7),
which ascribes additional indirect value to the early investments in infrastructure and
architecture. (Actually, the real-options techniques in (Sullivan et. al., 2001) and
Chapters 11, 24, and 41 can estimate such values). The preferred approach will
depend on the project’s stakeholders and their expectations.
 Of course, the actual and potential benefit values realized by each increment of
capability need to be monitored and adjusted for changes. For example, a low-cost
and user-friendly animated graphics package may increase the net value of animated
graphics for certain classes of applications (e.g. education and training), and limited-
domain speech understanding systems have shown considerable labor-saving value.

V
al

ue
 o

f s
of

tw
ar

e
pr

od
uc

t t
o

or
ga

ni
za

tio
n

Investment High-payoff Diminishing returns

Operating
system

Middleware

Basic application functions

Main application functions

Operational support functions

Secondary application functions

Animated graphics
Natural speech input

Level of
investment

Adjusted
infrastructure
value function

Figure 15.7. Example Production Function for Software Product Features

Value-Based Monitoring and Control at the Organization Level

 Several useful techniques are available for organizing and managing multi-
dimensional improvement strategies. The Balanced Scorecard technique (Kaplan and
Norton, 1996) organizes goals, strategies, and initiatives into four perspectives:
financial; customer; internal business process; and learning and growth. The BTOPP
business system (Scott Morton, 1991; Thorp, 1998) uses five perspectives: business,
technology, organization, process, and people. Both are similar; organizations can
choose the one that best fits or develop an alternative as appropriate. Chapters 12 and
22 provide good examples of value-based monitoring and control.

15.7 Change as Opportunity

Expending resources to adapt to change is frequently lumped into “rework costs”

and treated as a negative factor to avoid. Software change tracking systems often treat
changes as defects in the original requirements. Quality cost systems often treat
change adaptations as a quality cost to be minimized. These criteria tend to push
projects and organizations toward change-aversion.

Nowadays, changes are continually going on in technology, in the marketplace, in
organizations, and in stakeholders’ value propositions and priorities. And the rate of
change is increasing. Organizations that can adapt to change more rapidly than their
competition will succeed better at their mission or in the marketplace. Thus the ability
to adapt to change has business value.

Software is the premier technology for adaptation to change. It can be organized to
make the cost of changes small as compared to hardware. It can be updated
electronically, in ways that preserve continuity of service as the change is being made.
Thus, change as opportunity for competitive success is a key economic and
architectural driver for software projects and organizations.

Examples of Change as Opportunity

The main sources of change as opportunity come from changes in technology or in
the marketplace that open up new opportunities to create value. These are of course
other opportunity sources such as changes in legislation, organizational alignments,
and international relations.

An excellent example of technology change as opportunity has been the Internet
and the Web and their effect on electronic commerce. Organizations that learned early
how to capitalize on this technology made significant competitive gains. Other good
examples of technology change as opportunity have been agent technology, mobile
computing, and the Global Positioning System (GPS).

A good example of marketplace change as opportunity is the existence of GPS and
mobile computing in automobiles as an opportunity to provide mobile location-based
services. Another is the opportunity to add mobile electronic collect-on-delivery
billing and collection systems at the delivery point of rapid-delivery services such as
Federal Express and United Parcel Service.

Techniques for Enhancing Adaptability to Change

As documented in Microsoft Secrets (Cusumano and Selby, 1995), the world’s
leading software business uses a number of techniques for enhancing its adaptability to
change. Its synchronize-and-stabilize approach focuses on concurrent evolutionary
development, in which each feature team has the flexibility to adapt to change, while
buffer periods are built into each increment to enable the teams to synchronize their
results. Nightly build techniques also accommodate flexibility in the integration
schedule and adaptability to change. Also, Microsoft uses a number of techniques to
enhance organizational learning and adaptation, such as customer feedback analysis,
project postmortems, and technology-watch and marketplace-watch activities.

Project techniques for enhancing adaptability to change tend to fall into two
categories: architecture-based and refactoring-based. Architecture-based techniques
focus on identifying the product’s most likely sources of change, or evolution
requirements, and using information-hiding modularity techniques to hide the sources
of change within architectural modules (Parnas, 1979). Then, when the changes come,
they can be accommodated within modules rather than causing ripple effects across
the entire product. A related technique is schedule-as-independent-variable (SAIV),
which uses prioritized requirements as potential sources of change to ensure delivery
of the highest-priority requirements within a fixed schedule (Boehm et al., 2002b).

Refactoring-based change focuses on keeping the product as simple as possible, and
reorganizing the product to accommodate the next set of desired changes. A number
of the agile methods discussed in Section 21.3.4 rely on refactoring to accommodate
change, while the plan-driven methods rely on architecture. Which one is more likely
to succeed for a given project is largely based on the validity of the Extreme
Programming slogan, “You Aren’t Going to Need It (YAGNI).” If the evolution
requirements are knowable in advance and stable, the architecture-based approach will
easily accommodate them, while the YAGNI approach will incur a steady stream of
excess refactorings. On the other hand, if the requirements changes are frequent and
highly unpredictable, pre-architected frameworks will continually break, and
refactoring simpler designs will be preferable. Traceability tools such as those in
Chapter 31 can help with change impact analysis. The value-based release
prioritization approach in Chapter 22 is another good approach for addressing change
as opportunity.

Economic Value of Adaptability to Change

Developing a change-anticipatory modular design can be considered as an
investment in real options which can be exercised in the future to execute changes
which enhance the system’s value (Amram and Kulatilaka, 1998; Baldwin and Clark,
2000). More specifically, (Sullivan et al., 2001) uses the options-pricing approach to
analyze the economic value of Parnas’ information-hiding technique to modularization
around anticipated sources of change. This approach can also be combined with other
economic approaches, such as buying information to reduce the risk of anticipating the
wrong set of changes (e.g. via prototypes, user surveys, marketplace watch, or
technology watch activities).

Another perspective on the value of adaptability to change comes from studies of
complex adaptive systems (Kauffman, 1995). These studies show that for various
“fitness landscapes” or value functions, one can tune a set of adaptation parameters so
that a high-value operational solution will emerge over time via the interaction of a set
of adaptive agents. A too-rigid set of adaptation parameters will lead to gridlock; a
too-flexible set will lead to chaos. (Highsmith, 2000) shows numerous parallels
between software development and complex adaptive systems, including the value of
relatively agile over highly rigorous approaches to software development in domains
undergoing rapid change.

15.8 Integrating Ethical Considerations Into Software Engineering Practice

15.8.1 Motivation and Context

Software engineers have increasingly many and significant opportunities to
influence the outcome of software projects in ways that produce harmful or positive
results for some of the stakeholders involved. The field has produced some good
codes of ethics such as the ACM/IEEE Software Engineering Code of Ethics and
Professional Practice (ACM/IEEE, 1998). Its content covers a number of value-
intensive topics such as intellectual property, privacy, confidentiality, quality of work,
fairness, liability, risk disclosure, conflict of interest, and unauthorized access
(Anderson et. al., 1993).

However, the codes provide only general guidelines, and it has been difficult to

integrate their value-oriented objectives into the value-neutral techniques and practices
constituting traditional software engineering. One of the major benefits of the value-
based software engineering approaches presented in this book is the opportunity to
naturally integrate value-oriented ethical considerations into daily software
engineering practice.

The approach presented in this chapter follows the principles in John Rawls’ seminal
book, A Theory of Justice (Rawls, 1971). The socioeconomic aspect of this theory is
based on the following principle:

Social and economic inequalities are to be arranged so that they are both
(a) to the greatest benefit of the least advantaged and
(b) attached to offices and positions open to all under conditions of fair

equality of opportunity.

This principle recognizes the fact that some individuals are better able to increase
everyone’s benefits than are others. It holds that it is fair for such individuals to
operate with more resources than others, to the extent that they thereby generate
benefits for others, and particularly maximize the benefits of least-advantaged people.

The Theory W or stakeholder win-win approach (Boehm and Ross, 1989) to value-

based software engineering presented in Section 15.2 and Chapter 36 provides a way
to apply Rawls’ Theory of Justice to daily software engineering practice, by
recognizing the class of least-advantaged people as one of the success-critical
stakeholders in a software project.

A good start toward this approach was provided by Collins et al. (Collins et. al.,

1994). They developed an interpretation of the Theory of Justice that identifies the
least-advantaged class or penumbra as an essential stakeholder in software engineering
decisions, along with the providers, buyers, and users of a prospective software
system. They provide and exemplify a matrix of obligations of each of the stakeholder
classes to the others, and identify techniques for addressing other aspects of the
Theory of Justice. These include the concept of risking harm and the publicity test for
ethical appropriateness (how would you like it if your software engineering decision
were discussed on the evening news?).

15.8.2 Fire Dispatching Cast Study

The synthesized case study includes ethical problems encountered in several urban

emergency services software projects.

Several years ago, the city of Zenith suffered a major fire disaster in its central

business district, causing over $300 million in property damage. An investigation
concluded that much of the loss could have been avoided with a modern automated
fire dispatching system instead of the current largely manual system originally
developed for Zenith in the 1920s.

The mayor of Zenith then pledged to ensure that Zenith would have a modern
automated fire dispatching system in 2 years (just before the next election). His staff
chose a consultant company to rapidly prepare specifications and a competitive
procurement package for the system. In three months, the company prepared the
package, including an algorithm that would dispatch fire equipment based on
minimizing property damage and an $8 million cost estimate. Bidding was opened for
a fixed-price contract to develop the system to the specifications, and three months
later, the contract was awarded to Integrated Logistics, Inc. (ILI), for their bid price of
$4.4 million. ILI was new to urban emergency services but planned to reuse an
extensive library of reusable logistics software. They also indicated that their
automated system would reduce Zenith’s annual operating costs for fire dispatching by
50%.

ILI delivered an automated system on schedule, and demonstrated its impressive

user interface to city leaders and the press with much fanfare. However, three months
later, the Fire Department had discovered several problems:

• There were major delays and shortfalls in the cutover from the old system to
the new system due to inadequate budgeting, planning, and preparation for
conversion, installation, and training for users, administrators, and
maintainers.

• The automated algorithm would send equipment to false alarms in rich
people’s neighborhoods while poor people’s houses burned, which did not
look good in the newspapers.

• The labor savings were not realized after the Firemen’s Union went on a one-
day sick-out in protest over the potential loss of dispatchers’ jobs.

• The delivered system had weak off-nominal capabilities that resulted in
numerous dispatching delays and work-arounds (at least, these provided the
extra dispatchers with things to do). The system was contractually compliant,
but gave signs of being very risky to use in a crisis, requiring expensive post-
delivery rework to improve safety.

• The reused logistics software was weak not only on safety but on privacy
safeguards, putting confidential identity and financial information at risk.

• The English-only user interface caused numerous usage problems with the
general public and multilingual hot-line operators.

Clearly, these problems raise ethical concerns in such areas as fairness, quality of
work, liability, risk disclosure, privacy, confidentiality, and unauthorized access. Let
us see how the seven key elements of VBSE presented above can be applied to
integrate ethical considerations into software engineering considerations.

1. Benefits Realization Analysis. The Results Chain approach can be used to

identify missing success-critical stakeholders, particularly if maximizing benefits to
the least advantaged is added to the desired outcomes.

Figure 15.8 provides an example Results Chain that could have been used to
identify missing stakeholders and avoid the problems that happened with the Zenith
Fire Dispatching System. It would start with a simple beginning Initiative to develop
software on the left and a desired Outcome on the right that might initially focus on
reducing property loss. By considering potential risks and pitfalls (and by considering
problems lists like the one above), the customers and developers could identify and
incorporate missing Initiatives and success-critical stakeholders into the system
definition, development, and deployment process. As seen in Figure 15.8, these would
include not only penumbra stakeholders, but also administrators, maintainers, and
interoperators such as police and emergency medical systems.

Develop fast,

reliable Fire
Dispatching

software

Outreach to at-risk
communities

Ensure integration

with emergency
medical, police

systems

Prepare, execute

conversion, training,
cutover plans

Fast, reliable,

safe, fair, usable,
maintainable

software

Well-prepared
operational

system

Reduce loss of
life, health,

property fairly

Involve dispatchers,

administrators,
maintainers

Maintainability, usability inputs

safety, fairness inputs

effective
software

Interoperability inputs

cost-effective cutover

fair,

cost-effective
operational

system

fast,
reliable

software

Figure 15.8. Results Chain for Fire Dispatching System

2. Stakeholder Value Proposition Elicitation and Reconciliation. The
stakeholder win-win approach to negotiating system objectives, constraints, and
alternatives can be enhanced by adding representatives of the least-advantaged class or

penumbra, and by expanding the checklist of negotiation topics to identify the most
critical system attributes for each class of stakeholder.

Table 15.1 shows a modification of one of the obligation matrices in (Collins et. al.,
1994) that provides guidance on negotiation topics. The figure extends the “buyer”
stakeholder to an “owner” stakeholder including not only system acquisition but also
system transition, operations, and maintenance. It also adds a number of initiatives
identified in the Results Chain. As with many systems, a full obligation matrix would
include an additional column for interoperator stakeholders, and perhaps others such
as upper management and insurance providers. The negotiation might include
arrangements for Zenith software engineers to work on the developer’s team, to
enhance visibility and maintainability.

 Table 15.1. Obligations of the Software Owner

To the provider To the owner To the user To the penumbra

� negotiate in
good faith,
recognizing the
importance of
provider’s fair
profit

� learn enough

about the
software to
make informed
decisions

� facilitate

adequate

communication
with users,
administrators,
maintainers, and
the penumbra

� involve

administrators,

maintainers in
system
definition,
development,
and transition
planning

� proactively

address risks of
delivery
shortfalls and
overruns

� provide quality
software
appropriate to
user’s needs
within
reasonable
budget
constraints

� prudent

introduction of
automation

� informed

consent to using
software

� involve user

representatives
in system
definition,
review, and
prototype
exercise

� buy software
only with
reasonable

safeguards for
the public

� open about

software
capabilities and
limitations

� involve

penumbra
representatives
in system
definition,
review, and
prototype
exercise

Similar example artifacts can be provided for the remaining five key elements, but
space limitations constrain their description to the short summaries below.

3. Business Case Analysis. Return on investment techniques can be applied for
each class of stakeholder to validate that the developed system will deliver cost-
effective results, particularly for the penumbra.

4. Continuous Risk and Opportunity Management. The concept of risking
harm can be expanded into a full set of risk and opportunity management techniques
including risk identification, risk assessment, risk prioritization, risk planning and
control, and the use of risk analysis to determine “how much is enough” of each
software engineering activity.

5. Concurrent System and Software Engineering. The anchor point milestones
in the WinWin Spiral Model provide a framework for controlled concurrent
engineering, feasibility validation, and stakeholder concurrence on in-process software
decisions and plans.

6. Value-Based Monitoring and Control. Techniques such as the Balanced
Scorecard and Earned Stakeholder Value can be applied to monitor and control
progress toward meeting ethical as well as product and financial goals.

7. Change as Opportunity. The pace of change in technology, organizations,
environments, and stakeholder value propositions will continue to increase.
Techniques such as evolution requirements, architectural encapsulation of sources of
change, and agile methods can help ensure fair accommodation to change.

This partial single-thread application of the 7 key elements provides an example of
how VBSE techniques can integrate ethical considerations into a software engineer’s
daily practice. Clearly, there are many other ethical considerations for which VBSE
can provide similar assistance. Besides the references (ACM/IEEE, 1998; Anderson
et. al., 1993; Boehm and Ross, 1989; Collins et. al., 1994, Rawls, 1971), some further
good treatments of software engineering ethics considerations are the books (Ermann
and Shauf, 2003; Johnson and Nissenbaum, 1995; and Baird et. al., 2000).

15.9 References

ACM/IEEE, “The Software Engineering Code of Ethics and Professional Practice,”
available at www.acm.org and www.computer.org, 1998.

D. Ahern, A.Clouse, and R. Turner, CMMI Distilled, Addison Wesley, 2001.

M. Al-Said, “Identifying, Analyzing, and Avoiding Software Model Clashes”, Ph.D.
Dissertation, USC, 2003.

M. Amram and N. Kulatilaka, Real Options, Harvard Business School Press, 1999.

R. Anderson, D. Johnson, D. Gotterbarn, and J. Perolle, “Using the New ACM Code
of Ethics in Decision Making,” Comm.ACM, February 1993, pp. 98-105.

R. Baird, R. Ramsower, and S. Rosenbaum, Cyberethics, Prometheus Books, 2000.

C. Baldwin and K. Clark, Design Rules: The Power of Modularity, MIT Press, 2000.

B. Boehm and R. Turner, Balancing Agility and Discipline, Addison Wesley, 2004.

B. Boehm, D. Port, and M. Al-Said, “Avoiding the Software Model-Clash
Spiderweb,” Computer, November 2000, pp. 120-122.

B. Boehm, D. Port, A. Jain, & V. Basili, “Achieving CMMI Level 5 Improvements
with MBASE and the CeBASE Method,” Cross Talk, May 2002.

B. Boehm, D. Port, L. Huang, and A. W. Brown, “Using the Spiral Model and
MBASE to Generate New Acquisition Process Models: SAIV, CAIV, and SCQAIV”,
Cross Talk, January 2002.

B. Boehm and D. Port, “Balancing Discipline and Flexibility with the Spiral Model
and MBASE”, Cross Talk, December 2001. See also http://cse.usc.edu/mbase

B. Boehm, and R. Ross, “Theory-W Software Project Management: Principles and
Examples,” IEEE Trans. SW Engr., July 1989, pp. 902-916.

D. Carr, “Sweet Victory”, Baseline, December 2002.

R. Charette, Software Engineering Risk Analysis and Management, McGraw Hill,
1989

W. Collins, K. Miller, B. Spielman, and J. Wherry, “How Good is Good Enough?”,
Comm. ACM, January 1994, pp. 81-91.

M. Cusumano and R. Selby, Microsoft Secrets, How the World's Most Powerful
Software Company Creates Technology, Shapes Markets, and Manages People, The
Free Press,1995.

M.D. Ermann and M. Shauf, Computers, Ethics, and Society (3rd ed.), Oxford U.
Press, 2003.

Federal Aviation Administration, “The Integrated Capability Maturity Model,” 1997.

S Faulk, D. Harmon, and D. Raffo, “Value-Based Software Engineering (VBSE): A
Value-Driven Approach to Product-Line Engineering,” Proceedings, First
International Conference on Software Product Line Engineering, August 2000.

J. Highsmith, Adaptive Software Development, Dorset House, 2000.

J. Highsmith, Agile Software Development Ecosystems, Addison Wesley, 2002.

I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process,
Addison Wesley, 1999.

D. Johnson and H. Nissenbaum, Computers, Ethics, and Social Values, Prentice Hall,
1995.

R. Kaplan and D. Norton, The Balanced Scorecard: Translating Strategy into Action,
Harvard Business School Press, 1996.

S. Kauffman, At Home in the Universe, Oxford University Press, 1995.

P. Kruchten, The Rational Unified Process, (2nd ed.), Addison Wesley, 2001.

M. Paulk, C. Weber, B. Curtis, and M. Chrissis, The Capability Maturity Model,
Addison Wesley, 1994.

D. Parnas, “Designing Software for Ease of Extension and Contraction,” IEEE Trans.
Software Engr., March 1979, pp. 128-137.

J. Rawls, A Theory of Justice, Belknap/Harvard U. Press, 1971, 1999.

D. Reifer, Making the Software Business Case, Addison Wesley, 2002.

W. E. Royce, Software Project Management, Addison-Wesley, 1998.

M. Scott Morton, The Corporation of the 1990s: Information Technology and
Organization Transformation, Oxford University Press, 1991.

Software Engineering Institute, Capability Maturity Model Integration (CMMI),
Version 1.1., CMU/SEI-2002-TR-012, March 2002.

Software Productivity Consortium, “The Evolutionary Spiral Process,” SPC Technical
Report, Herndon, VA, 1992.

K. Sullivan, Y. Cai, B. Hallen, and W. Griswold, “The Structure and Value of
Modularity in Software Design,” Proceedings, ESEC/FSE, 2001, ACM Press, pp. 99-
108.

J. Thorp and DMR, The Information Paradox, McGraw Hill, 1998.

Author Biography

Barry Boehm is the TRW Professor of Software Engineering and Director of the
Center for Software Engineering at USC. His current research interests include
software process modeling, software requirements engineering, software architectures,
software metrics and cost models, software engineering environments, and value-
based software engineering. His contributions to the field include the Constructive
Cost Model (COCOMO), the Spiral Model of the software process, and the Theory W
(win-win) approach to software management and requirements determination. He is a
Fellow of the primary professional societies in computing (ACM), aerospace (AIAA),
electronics (IEEE), and systems engineering (INCOSE), and a member of the US
National Academy of Engineering.

