
074 0 -74 5 9 / 21© 2 0 21I E E E MAY/JUNE 2021 | IEEE SOFTWARE 61

FOCUS: ON SOFTWARE QUALITY

TECHNICAL DEBT (TD) has grown
to be one of the most important
metaphors1,2 to describe develop-
ment shortcuts that are taken for
expediency but cause the degrada-
tion of internal software quality.
The metaphor has also served well
the discourse between engineers and
management on how to invest re-
sources on maintenance alongside
features and bugs.

Due to its importance, several
tools have been released that offer
to measure TD through static code
analysis (the most common way
of addressing TD). These are both
commercial tools and research pro-
totypes. However, each tool uses
different metrics, indices, quality
models, static analysis rules, TD re-
mediation models, and definitions of
the various TD concepts. This leaves
developers baffled as to how to se-
lect the most fitting TD tool for the
task at hand.

Moreover, many of the tools that
proclaim themselves to be TD mea-
surement tools do not even calcu-
late a TD index (TDI) in terms of
money or effort but simply report
the detection of smells or other
code issues. This poses the risk that

Digital Object Identifier 10.1109/MS.2020.3024958
Date of current version: 16 April 2021

// Different tools adopt

different terms, metrics,

and ways to identify and

measure technical debt.

We attempt to clarify the

situation by comparing the

features and popularity of

technical debt measurement

tools and analyzing the

existing empirical evidence

on their validity. //

An Overview and
Comparison of
Technical Debt
Measurement
Tools
Paris Avgeriou, University of Groningen

Davide Taibi, Tampere University

Apostolos Ampatzoglou, University of Macedonia

Francesca Arcelli Fontana, University of Milano-Bicocca

Terese Besker, Chalmers University of Technology

Alexander Chatzigeorgiou, University of Macedonia

Valentina Lenarduzzi, LUT University

Antonio Martini, University of Oslo

Athanasia Moschou, University of Macedonia

Ilaria Pigazzini, University of Milano-Bicocca

Nyyti Saarimäki, Tampere U niversity

Darius Sas, Universit y of Groningen

Saulo Soares de Toledo, University of Oslo

Angeliki Tsintzira, Universit y of Macedonia

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

62 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: ON SOFTWARE QUALITY

anything wrong in the code will
be considered as TD; thus, the
TD metaphor will be diluted and
lose its value as a means of trans-
lating internal quality issues into
monetary values (currency or effort)
and risks.

Our aim is to provide an overview
of the current landscape of TD mea-
surement tools through a set of ob-
jective criteria related to the offered
features and their popularity. Practi-
tioners can use this overview to assess
the tools, understand their strengths
and weaknesses, and ultimately se-
lect the most suitable one for their
needs. The scope of the compari-
son is limited to three specific types
of TD—namely, code, design, and
architecture—as they are the most
studied types.3

We considered 26 tools and
filtered them to select nine for
analysis based on whether they ac-
tually measure TD, either directly
or through a proxy. Subsequently,
we used multiple sources to col-
lect information on their features
and popularity, and we devised a
set of criteria to evaluate each tool.
To verify our findings in terms of
correctness and completeness, we
asked the corresponding tool ven-
dors to review them and provide us
with feedback.

Acknowledging that users would
be reluctant to rely on tools that
provide inaccurate results, we fur-
ther looked into the way these tools
were validated in the literature,
and we present the amount of col-
lected empirical evidence. Finally,
to better guide practitioners, we of-
fer our own interpretation of the
findings by discussing how to se-
lect a tool, which tools are best for
what, which are popular in differ-
ent communities, as well as what is
still missing.

Background
TD is a “design or implementation
construct that is expedient in the short
term, but sets up a technical context
that can make a future change more
costly or impossible” and is “limited
to internal system qualities, primar-
ily maintainability and evolvability.”1
TD expresses the development of
an artifact 1) in a “quick and dirty”
way for the sake of speeding up de-
velopment or 2) optimally but later
rendered suboptimally because of a
change in context (e.g., third-party li-
braries getting outdated). In any case,
this debt may need repayment, e.g.,
through refactoring, as maintainabil-
ity and evolvability become harder.
Many types of TD have been studied
by researchers and academics, such as
code, architectural, testing, and re-
quirements debt.4

The TD metaphor relies on two
main concepts borrowed from eco-
nomics: principal and interest. Prin-
cipal refers to the cost of refactoring
software artifacts so that they reach
the desired level of maintainability and
evolvability.1 Interest is the extra ef-
fort that developers spend when mak-
ing changes because of the existence of
TD, e.g., because of code smells or un-
necessarily complex code.1

In related work, Arcelli et al.5
investigated in detail how TDIs are
calculated by five tools in terms of
both their input (e.g., code viola-
tions) and output (e.g., remediation
cost). Results showed that not all
tools use architectural information,
while the estimation of remediation
costs relied predominantly on static
analysis. However, to the best of our
knowledge, there is no comprehen-
sive comparison of the available TD
tools, especially taking into account
the overall set of offered features and
their popularity among practitioners
and researchers.

Setting the Stage
To systematically perform the tool
comparison, we have set up an em-
pirical study comprising five steps.

Identifying Relevant Tools
For the first step, identifying relevant
tools, we performed an academic lit-
erature search and a web search.

• Literature search: We relied
on the IEEE Xplore and ACM
Digital Library search engines.
Our search string was applied
on the title and abstract and had
the following form: “technical
debt” AND (“measurement” or
“assessment” or “estimation”)
AND (“tool” or “platform”). We
gathered the studies that resulted
from the aforementioned search
and filtered out those that nei-
ther introduced nor mentioned
any TD tool. We then checked
the articles that cited them (for-
ward snowballing).

• Web search: We used major
search engines, such as Google,
Bing, and Yahoo, using the same
query as in the literature search.
The results led us either to the
landing pages of the websites of
companies that own the tools or
to articles introducing tools for
assessing TD.

We note that, although many syn-
onyms (or near synonyms) of TD
could be used in the search string,
we opted not to broaden it using
terms similar to TD symptoms or
remediation actions, such as refac-
torings, code smells, antipatterns,
and so on. This could lead to multi-
ple narrow-scoped tools that would
be excluded later because they do
not aim at estimating the effort
required to eliminate the identi-
fied inefficiencies.

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

 MAY/JUNE 2021 | IEEE SOFTWARE 63

To ensure we did not miss relevant
tools, we manually cross-checked
with 1) the tool demo sessions of the
first and second International Con-
ference on TD in 2018 and 2019, re-
spectively, and 2) all tools mentioned
in a tertiary study on TD manage-
ment.3 No additional tools were iden-
tified through the cross-check. The
complete list of tools from this step is
available in the replication package.

Tool Filtering
For the second step, tool filtering, we
checked the aforementioned list of
tools against the following criteria.

• Inclusion criterion: The tool cal-
culates an aggregate measure of
the system’s TD principal and/or
interest either directly (in terms
of money or effort) or as a proxy
based on static code analysis.

• Exclusion criterion: The tool is
not accessible; e.g., it is not able
to be downloaded or installed,
lacks documentation for installa-
tion/deployment, or has an inac-
tive website.

The inclusion criterion ensures that
the selected tools match the scope
of the article: they actually estimate
the key concepts of the TD metaphor
(interest and principal). Tools that
identify code smells, without any as-
sessment of the time that is required
to resolve them, fail this criterion.

As a proxy for the TD principal
and interest, we refer to any measure
that does not directly represent these
quantities but is correlated to them.
For example, DV8 does not provide
a complete TD interest index, but
an accompanying study6 explains
how the extra time spent on fixing
bugs due to the presence of TD was
used as a proxy for TD interest. Af-
ter applying the inclusion/exclusion

criteria, nine tools were retained for
data extraction (see Table 1).

Tool Assessment Criteria
For the third step, tool assessment
criteria, we performed a focus group
discussion (among the authors of
this article) to derive a set of criteria
that can be used by practitioners to
assess the strengths and weaknesses
of each solution. The selected crite-
ria can be classified into three main
groups: features, popularity, and
validation. The offered features were
collected by inspecting the docu-
mentation and websites of the tools
and by trying them out (whenever
a demo license was available). The
major criteria are shown in Table 1.
(See the replication package7 for the
full set of 18 criteria.)

We worked in groups of either
two or three researchers to collect
data, whereas we discussed in ple-
nary how to classify calculated mea-
sures into principal and interest.
The second group of criteria refers
to the industrial and research pop-
ularity of the tools. We evaluated
popularity in terms of how often the
tools are mentioned in public on-
line sources. The following sources
were investigated:

• Online media: We examined
a number of channels used by
practitioners to share informa-
tion online (posts, tags, users,
groups, or websites pertaining
to the tools). In particular, we
searched the tools’ own com-
munities, LinkedIn and Google
groups, as well as the number of
appearances in commonly used
communities and discussion
forums, such as StackOverflow,
Reddit, DZone, and Medium.

• Scientific literature: We used
Google Scholar and Scopus to

investigate the popularity of
each tool by applying the follow-
ing search string on all fields in-
cluding the title, abstract, body,
and references: (“tool_Name”
or “tool_url”) and “Technical
Debt.” In the case of tools with
different names (e.g., CAST), we
considered all variants in the or
term, e.g., (“CAST software”
or “Castsoftware” or “CAST
AIP”). Two authors indepen-
dently evaluated the relevance
of each publication reported by
Google Scholar and Scopus so as
to exclude non-English articles,
false positives, or articles from
different domains. In the case of
a disagreement, a third author
provided his or her opinion.

Verifying Our Analysis
For the fourth step, verifying our
analysis, we contacted the tool ven-
dors by email and asked them to
assess the correctness of our evalu-
ation and update any data point
that was incorrectly recorded. Dur-
ing this process, all tool vendors
responded, and only minor correc-
tions were suggested.

Empirical Evidence on
the Accuracy of Each Tool
For the fifth step, empirical evi-
dence on the accuracy of each tool,
we performed a multivocal literature
review,8 including peer-reviewed
(Scopus and Google Scholar) and
gray literature. In both cases, we
applied the following search string:
“tool_name and (evaluation or em-
pirical or validation or accuracy or
assess*).” For the keyword “tool_
name,” we adopted the same com-
binations of keywords used for the
popularity search. We also asked
the tool vendors to send us any re-
lated documents. The origin of each

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

64 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: ON SOFTWARE QUALITY

Table 1. The characteristics of the TDIs and other features in the analyzed tools.

Characteristics of the TDIs

Name
(Release year) Type Principal Interest Index

CAST
(1998)

Architectural,
design, and code

Time to remove issues Yes Violations × rule criticality × effort

SonarGraph
(2006)

Architectural
and design

Computation of several
metrics

No Structural debt index × minutes to fix

NDepend (2007) Architectural,
design, and code

Estimated person time to fix
issues

Yes Violations × fix effort

SonarQube (2007) Code Time to remove issues No Cost to develop one line of code × number of lines of code

SQuORE (2010) Design and code Time to remove issues No No

CodeMRI (2013) Design Not estimated Yes Interest—not mentioned

Code Inspector
(2019)

Architectural,
design, and code

Effort needed to avoid high TD No A function of violations, duplications, and readability/
maintainability issues

DV8 (2019) Architectural Number of affected files and
lines of code

Yes Penalties: additional bugs and/or changes in lines of code

SymfonyInsight
(2019)

Code Time to remove issues No Number of issues × time needed to remove the issue

Additional features

Name Platform Integration Output Other quality attributes Execute

CAST Windows Jenkins and Maven API and
GUI

Security, efficiency, changeability,
robustness, and transferability

Asynchronous

SonarGraph Independent Eclipse, Gradle, IntelliJ
Jenkins, Maven, and VS

GUI Changeability Real time

NDepend Windows Azure, Jenkins, and VS GUI Changeability, robustness, and
testability

Asynchronous

SonarQube Independent Eclipse, IntelliJ, and VS All* Security and reliability Real time

SQuORE Independent No API and
GUI

Changeability, reliability, efficiency,
portability, security, and testability

Asynchronous

CodeMRI Windows, Linux No CLI Security, efficiency, robustness,
portability, and testability

Asynchronous

Code Inspector Independent GitHub, GitLab, Bitbucket,
Jenkins, and Travis

API Security, changeability, portability,
testability, and maintainability

Asynchronous

DV8 Windows and
Mac

Depends and Jenkins GUI Maintainability, evolvability, and
security

Real time

SymfonyInsight Independent No GUI and
CI

Security, maintainability, and
reliability

Asynchronous

API: application programming interface; CI: continuous integration; CLI: command line interface; GUI: graphical user interface; VS: Visual Studio.
*All refers to API, GUI, CLI, and CI.

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

 MAY/JUNE 2021 | IEEE SOFTWARE 65

article (peer reviewed, gray litera-
ture, or from a vendor) is referenced
in the replication package.

Findings on Features
Table 1 reports our key findings
re garding the tools selected for com-
parison. (Tools are sorted in chrono-
logical order.) The table comprises
two parts: 1) the characteristics
of the different TDIs and 2) addi-
tional tool features (such as export,
integration with other tools, and
customizability).

For every index, we look into the
interest, principal, and measurement
method (which factors are used to
compute the index value). Interest-
ingly, not all of the tools consider the
interest, but all (except CodeMRI)
compute the principal. The latter is
usually identified with a heuristic
based, in some cases, on software
metrics and, in other cases, on the
effort needed to fix the identified
software violations, expressed in
either effort (in minutes) or mon-
etary form.

In general, every selected tool is
able to inspect both sources and bi-
naries of a given software project and
analyze at different granularity levels:
project, package, class, method, and
line of code. The analysis usually re-
sults in the identification of violations
and anomalies, which are highlighted
in the code through the tool’s own
user interface or in the IDEs that sup-
port plug-ins for six out of nine of the
analyzed tools.

All tools have different degrees
of customization. All of the tools
in the study allow developers to se-
lect the rules for the analysis. In ad-
dition, five tools (CAST, NDepend,
SonarGraph, CodeMRI, and So-
narQube) allow users to add rules
(e.g., define a new metric) and cus-
tomize their thresholds. One tool

(SymfonyInsight) allows only cus-
tomization of the thresholds, and
two tools (Code Inspector and DV8)
do not allow users to add rules or
customize thresholds. Finally, all of
the tools, except NDepend and Co-
deMRI, allow the creation of new
plug-ins.

Furthermore, all tools address
additional quality attributes. We re-
port the names of the qualities as
reported by the vendors in Table 1,
and we also provide a mapping to
the software quality standards that
the qualities refer to in the replica-
tion package.7

Findings on Popularity
In Figure 1(b), we report the results
related to the popularity of the tools
in the Stack Overflow, LinkedIn,
and Google groups as well as other
popular sites, such as Reddit, Dzone,
and Medium. Search strings and raw
data are available online in the repli-
cation package.7 Please note that the
results are normalized against the
number of years since the introduc-
tion of each tool.

SonarQube is by far the most
popular tool, and it is visible in all
of the channels. In most cases, NDe-
pend comes in second, being pres-
ent in all of the channels as well but
with lower magnitude than Sonar-
Qube. SonarGraph covers almost
all channels, although with fewer
hits than NDepend and SonarQube,
while it does not have tags in Stack
Overflow. CAST scores only a few
hits in Stack Overflow and other
channels, while it has a large com-
munity on LinkedIn compared to
the other tools (although it is still
second after SonarQube). Finally,
DV8, CodeInspector, CodeMRI,
SQuORE, and SymfonyInsight are
the least popular tools, with only a
handful of posts.

As for the popularity in the scien-
tific literature [the radial bar charts
in Figure 1(a)], SonarQube and
CAST are clearly the most popular
tools, matching the results reported
earlier (see Lenarduzzi et al9). Com-
bining the findings from the research
literature and online media, it is
clear that SonarQube is the most
popular tool, whereas the results
for CAST and SonarGraph are com-
parable. In the case of NDepend, it
seems to be more popular in indus-
try than academia.

Findings on Validation
Applying the search string returned
a total of 5,313 publications. Next,
we filtered the obtained studies
based on their relevance to TD and,
in particular, to the evaluation of the
proposed indices for TD principal or
interest, obtaining a list of 122 ar-
ticles for a more detailed inspection.
As a final step of study inclusion/ex-
clusion, we proceeded to a full-text
reading, through which we excluded
72 additional studies as irrelevant.

The data extraction was per-
formed on the remaining 50 studies.
These articles were classified based on
the relevance of the empirical evalua-
tion. A full relevance point was given
to articles that evaluate the TD prin-
cipal or interest index with respect to
its accuracy of measurement in terms
of the used unit (i.e., effort or money);
a partial point was assigned to articles
that assess the relation of TD princi-
pal or interest index to other qualities
(e.g., maintainability, reliability, and
so on). This aligns with the scope of
this article, i.e., the ability of the tools
to provide indices for TD principal
and/or interest. All raw data extracted
during this process are available in the
replication package.

As shown in Figure 1(c), Sonar-
Qube is the tool whose measures

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

66 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: ON SOFTWARE QUALITY

have been considered more in em-
pirical evaluations, followed by DV8
and CAST. However, regarding the
accuracy of the TDI, only DV8, So-
narGraph, and SonarQube have
been considered in empirical stud-
ies. Based on these results, we find
that TD quantification in units of

effort is still lacking empirical vali-
dation in terms of its accuracy; this
may lead to practitioners not having
full confidence in the remediation
effort and order proposed. How-
ever, we argue that the existing tools
can be safely used for TD refactor-
ing, since they are able to identify

TD items in some meaningful (and
actionable) way.

Discussion

How to Select a Tool
There is no clear “winner” that
is the best option for all uses and

FIGURE 1. An infographic depicting the (a) popularity in the scientific literature (radial bar charts normalized per tool), (b) popularity

on the web (chord chart), and (c) empirical validation of TD tools in the literature (Sankey diagram). All values in the radial diagrams and

chord chart are in number of hits divided by the number of years.

(a) (b)

(c)

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

MAY/JUNE 2021 | IEEE SOFTWARE 67

organizations—different tools bet-
ter fit various purposes. We provide
some tips on how teams can select a
tool according to their needs.

First, it is important to think
whether the measurement of TD
principal and interest (or at least
their proxies) is required to perform
TD analysis. Some teams may sim-
ply require tools that analyze their
codebase to find code smells and
calculate quality metrics; numer-
ous tools serve this purpose.10 If,
however, principal and interest are
a “must have,” as indicated in re-
cent studies in several companies,11

one should restrict the selection to
the tools reported in this article. The
tools listed in Table 1 calculate prin-
cipal and interest differently; we ad-
vise teams to choose tools based on
what helps them the most to priori-
tize refactoring.

Next, individual developers usu-
ally need tools that measure code
debt only, but when the analysis in-
volves larger or multiple teams, then
tools analyzing the architectural
debt are highly recommended. Other
contextual factors that are useful to
narrow down the selection of a tool
include languages, IDEs, platforms,
the license, and the architecture
(server or client side). Finally, the in-
volvement of tools in research arti-
cles might provide practitioners with
further insights on the reliability of
the studied tools—in some cases,
supported by empirical evidence.

Which Tools Are Best for What?
All tools (but one) calculate princi-
pal, but only four of them calculate
interest—NDepend, CAST, DV8,
and CodeMRI—so these should
be the tools of choice for develop-
ers interested in estimating the ex-
tra maintenance effort required in
future iterations. For practitioners

interested in security, both CAST
and SonarQube offer support, al-
though CAST analyzes a higher
number of security rules. Change-
ability and, more generally speaking,
maintainability are considered by
all of the tools; however, the front-
runners are CAST, NDepend, and
SQuORE, which offer elaborated
functionality to manage maintain-
ability at multiple levels through
advanced features, such as custom
component dependency violation,
dependency graph analysis, and con-
trol flow analysis.

For detailed architectural analy-
sis, CAST, NDepend, and Sonar-
Graph provide several features that
aid the user in gauging whether the
intended architecture of the system
matches the actual one. Users who
manage code bases with a plethora of
programming languages should defi-
nitely consider SonarQube, which is
able to analyze the largest number of
languages (26). DV8 takes into ac-
count not just the source code of a
specific version but also version his-
tory and issue trackers. Such an ap-
proach renders the analysis richer by
using more sources of data to mea-
sure evolutionary coupling (coupling
discovered via co-changes in different
snapshots) and its interest in terms of
penalties incurred during bug fixing;
using historical data also strength-
ens the reliability of its results.

Which Tools Are Popular Among
Practitioners and Researchers?
We observed that the communities
behind the analyzed tools differ sig-
nificantly. In particular, SonarQube
and NDepend are the only tools dis-
cussed in the Stack Overflow com-
munity, with SonarQube being by
far the one with the most questions
asked and answered. The organiza-
tion behind SonarQube seems to

invest in supporting the TD commu-
nity by creating posts, tags, and an-
swers to users’ questions. However,
in the majority of cases, the posts are
not explicitly related to TD but more
related to setting up and customizing
the tool.

Examining the communities on
LinkedIn, numerous members dis-
cuss SonarQube and, to a lesser ex-
tent, CAST, while SonarGraph seems
to have a small community in Google
groups. However, the presence in
these communities can be seen both
as a sign of popularity but also as
a way for the tools to create visibil-
ity for marketing purposes. In sum-
mary, SonarQube seems to have a
strong community behind the tool,
while NDepend and CAST are pres-
ent in selected channels as is, to a
lesser extent, SonarGraph. The re-
maining tools do not seem to have
an online community supporting
them. Although popularity cannot
be considered a quality index per se
(less precise tools can become more
popular due to better marketing), we
believe that a tool that is widely used
by practitioners inherently gives them
some value, or it would not be used
and discussed at all.

What Is Still Missing?
First, all analyzed tools quantify the
level of maintainability issues (i.e.,
the principal), but not all tools fo-
cus on the consequence of these is-
sues (i.e., the interest). This weakens
the use of TD as a communication
medium: practitioners can commu-
nicate the existence of the problem
(principal), but they do not have
numbers on extra maintenance costs
(interest) nor the probability of ad-
ditional maintenance (interest prob-
ability) to argue about repaying TD.
It is crucial that all dimensions of the
TD metaphor are represented.

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

68 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: ON SOFTWARE QUALITY

Second, all analyzed tools but one
(DV8) consider only static analysis in
their TD calculation models. How-
ever, current software development
practices entail additional rich sources
of information (e.g., version history,
issue trackers, email exchanges, and
so on); these can be exploited for im-
proving the accuracy of indicators or
providing different perspectives.

Third, all tools focus on a limited
set of types of TD: they work pre-
dominantly on code TD, to a lesser
extent on design debt, and in a rather
limited sense on architectural debt.
This is not a coincidence: code and
design debt are the easiest types to
detect and, usually, repair. However,
we argue that architectural debt has
a much larger impact on maintenance
efforts than other types.12

Last but not least, there is no com-
monly agreed on and validated set of
rules and metrics for measuring TD.
Instead, each tool uses its own set of
rules and metrics without detailed ex-
planation or motivation. Thus, there
might exist discrepancies among the
tools regarding the rules and output
remediation time, and this creates
confusion about which rules are im-
portant and how to customize their
severity to match one’s needs.

Limitations
The results of this article are subject
to some limitations. The first one is
the narrow search string we applied.
We are aware that using different syn-
onyms or relaxing the search string
might have yielded more results. How-
ever, we aimed at using the terminol-
ogy adopted by the TD community.
The choice of our inclusion/exclusion
criteria also affected the selection of
tools. We have aligned the inclusion
criteria with the scope of the article;
thus, only tools that directly or indi-
rectly measure TD were included.

As for data extraction, different
researchers collected the informa-
tion for different tools and, there-
fore, possibly obtained information
differently. We mitigated this threat
by first assigning data collection
per tool to at least two researchers
with experience on that tool; any
differences in opinion among them
were discussed and resolved. Subse-
quently, the tool vendors were asked
to inspect the results.

Furthermore, the online popular-
ity of the tools could be biased by the
activity of their respective commu-
nities: we compared the number of
posts and not the number of tool us-
ers. Some tools may have very active
but small communities; others may be
widely used but not largely discussed
online. In addition, for some tools,
the discussion may happen elsewhere,
such as in mailing lists or forums.

The results rely mostly on quan-
titative indicators to provide useful
insights about the tools, but we warn
against using such numbers as an
absolute way to assess their quality.
To mitigate this limitation, we have
added an extensive discussion based
on the researchers’ qualitative inter-
pretation gathered during the assess-
ment procedure.

Finally, despite our best efforts,
our personal experience using the
analyzed tools might have biased
the data analysis. Specifically, we
have extensive experience with So-
narQube (18 published articles) and
some familiarity with CAST (3 ar-
ticle), SonarGraph (2 articles), and
SQuORE (1 ar t icle); we had no
background with the other tools.
We mitigated this by collecting ob-
jective data instead of user opinions
and by making all of the data for
this study freely available online to
allow other researchers to replicate
this article.7

I n this article, we highlighted the
current state of the market for
TD tools, focusing on those pro-

viding an estimation of TD princi-
pal and/or interest. These tools have
been selected through a rigorous
process and were analyzed regard-
ing their offered features, popular-
ity, and accompanying evidence.

The studied tools offer a com-
prehensive variety of functionalities
that cover multiple languages, levels
of analysis, and artifacts as well as
different computations of TD princi-
pal and interest. They can, to some
extent, identify, measure, and moni-
tor TD as well as provide suggestions
for repayment. More importantly,
they support the communication of
TD through monetary values, both
horizontally among the technical
teams and vertically between the
technical and management teams.

Our analysis offers practitioners
a clearer overview of the current
landscape of TD tools and high-
lights their differences in offered
features, popularity, and empirical
validation as well as current short-
comings. Our results allow the
tools to be compared against each
other so that an informed choice
can be made on which one best
suits the needs of individual devel-
opers or their teams.

As a follow-up to this article, we
plan to conduct a user study with
practitioners to compare the tools
based on concrete TD management
tasks. This would complement the
current study with information on
the usability and usefulness of the
tools.

References
1. P. Avgeriou, P. Kruchten, I. Ozkaya,

and C. Seaman, “Managing Techni-

cal Debt in software engineering

(Dagstuhl seminar 16162),” Dagstuhl

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

MAY/JUNE 2021 | IEEE SOFTWARE 69

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

PARIS AVGERIOU is professor of software

engineering at the University of Groningen,

Groningen, 9747 AG, The Netherlands, where

he has led the software engineering research

group since September 2006. Avgeriou

received a Ph.D. from the National Technical

University of Athens, Greece. He is a Senior

Member of IEEE. Further information about

him can be found at http://www.cs.rug.nl/

~paris/. Contact him at p.avgeriou@rug.nl.

TERESE BESKER received her Ph.D. in

software engineering from Chalmers University

of Technology, Gothenburg, 41756, Sweden,

in 2020. Besides her research career, she has

worked as a senior software engineer in the

software industry for more than 15 years. She

has published several peer-reviewed articles in

journals as well as conference and workshop

proceedings. She is a Member of IEEE. Con-

tact her at terese.besker@gmail.com.

DAVIDE TAIBI is an associate professor

at Tampere University, Tampere, 33014,

Finland. He is a Member of IEEE and the

IEEE Computer Society. Further informa-

tion about him can be found at http://

www.taibi.it. Contact him at davide.taibi@

tuni.fi.

ALEXANDER CHATZIGEORGIOU is a

professor of software engineering in the

Department of Applied Informatics at the

University of Macedonia, Thessaloniki,

546 36, Greece. Chatzigeorgiou received

his Ph.D. in computer science from the

Aristotle University of Thessaloniki, Greece,

in 2000. Further information about him can

be found at https://users.uom.gr/~achat/.

Contact him at achat@uom.edu.gr.

APOSTOLOS AMPATZOGLOU is an as-

sistant professor of software engineering in

the Department of Applied Informatics at the

University of Macedonia, Thessaloniki, 546

36, Greece. Ampatzoglou received his Ph.D.

in software engineering from the Aristotle

University of Thessaloniki in 2012. Further

information about him can be found at https://

users.uom.gr/~a.ampatzoglou/. Contact him

at apostolos.ampatzoglou@gmail.com.

VALENTINA LENARDUZZI is a re-

searcher at LUT University, Lahti, 15210,

Finland. In 2011 she was one of the

cofounders of Opensoftengineering s.r.l.,

a spin-off company of the Università degli

Studi dell’Insubria. She is a Member of

IEEE. Further information about her can

be found at www.valentinalenarduzzi.it.

Contact her at valentina.lenarduzzi@lut.fi

FRANCESCA ARCELLI FONTANA

is a full professor at the University of

Milano Bicocca, Milan, 20126, Italy. Arcelli

Fontana received her Ph.D. in computer

science from the University of

Milano. She is a Member of IEEE. Contact

her at francesca.arcelli@unimib.it.

ANTONIO MARTINI is an associate pro-

fessor at the University of Oslo, Oslo, Norway,

and a part-time researcher at Chalmers

University of Technology, Gothenburg,

0373, Sweden. Martini received his Ph.D.

in software engineering from Chalmers

University of Technology, Sweden, in 2015.

Further information about him can be found

at https://www.mn.uio.no/ifi/english/people/

aca/antonima/index.html. He is a Member of

IEEE. Contact him at antonima@ifi.uio.no.

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

70 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: ON SOFTWARE QUALITY

Rep., vol. 6, no. 4, pp. 110–138,

2016. doi: 10.4230/DagRep.

6.4.110.

2. C. Izurieta et al., “Perspectives

on managing technical debt. A

transition point and roadmap from

Dagstuhl,” in Proc. 1st Int. Work-

shop Tech. Debt Analytics (TDA).

In Association 23rd Asia-Pacific

Software Engineering Conf. (AP-

SEC). Hamilton, New Zealand:

Univ. of Waikato, Dec. 6–9, 2016,

pp. 84–87.

3. N. Rios, M. G. de Mendonça Neto,

and R. O. Spínola, “A tertiary study

on technical debt: Types, manage-

ment strategies, research trends, and

base information for practitioners,”

Inf. Softw. Technol., vol. 102, pp.

117–145, Oct. 2018. doi: 10.1016/j.

infsof.2018.05.010.

4. Zv. Li, P. Avgeriou, and P. Liang,

“A systematic mapping study on

Technical Debt and its manage-

ment,” J. Syst. Softw., vol. 101, pp.

193–220, Mar. 2015. doi: 10.1016/j.

jss.2014.12.027.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ATHANASIA MOSCHOU is a Ph.D.

student in computer science at the Univer-

sity of Macedonia, Thessaloniki, 54636,

Greece. Moschou received her master’s

degree in 2018 in applied informatics

from the University of Macedonia, Greece.

Further information about her can be

found at https://www.linkedin.com/in

/nasiamoschou/. Contact her at nasiamos

chou@gmail.com.

DARIUS SAS is a Ph.D. student at the Ber-

noulli Institute for Mathematics, Computer

Science, and Artificial Intelligence, Uni-

versity of Groningen, Groningen, 9747 AG,

The Netherlands. Sas received his master’s

degree in computer science in 2018 from

the University of Milano-Bicocca, Milan,

Italy. Contact him at d.d.sas@rug.nl.

ILARIA PIGAZZINI is a Ph.D. student in

computer science at the Department of

Computer Science, Systems, and Com-

munications, University of Milano-Bicocca,

Milan, 20126, Italy. Pigazzini received

her M.Sc. degree from the University of

Milano-Bicocca in computer science in

2018. Contact her at i.pigazzini@campus

.unimib.it.

SAULO SOARES DE TOLEDO is a Ph.D.

candidate at the University of Oslo, Oslo,

0373, Norway. de Toledo received his

master’s degree in computer science from

the Federal University of Campina Grande,

Paraíba, Brazil. Further information about

him can be found at https://www.linkedin

.com/in/saulostoledo/. Contact him at

saulos@ifi.uio.no.

NYYTI SAARIMÄKI is a Ph.D. student in

software engineering at Tampere University,

Tampere, 33014, Finland. Saarimäki received

her M.Sc. in theoretical computer science in

2018 from Tampere University of Technology.

Further information about her can be found at

https://nyyti.github.io/. Contact her at nyyti

.saarimaki@tuni.fi.

ANGELIKI TSINTZIRA is an M.Sc.

student in the School of Electrical and

Computer Engineering in the Aristotle

University of Thessaloniki, Thessaloniki,

546 36, Greece, and a researcher at the

Department of Applied Informatics of the

University of Macedonia, Macedonia,

546 36, Greece. Tsintzira received her inte-

grated master’s degree in informatics and

telecommunications engineering from the

University of Western Macedonia, Greece.

Contact her at angeliki.agathi.tsintzira@

gmail.com.

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

 MAY/JUNE 2021 | IEEE SOFTWARE 71

5. F. Arcelli Fontana, R. Roveda,

and M. Zanoni, “Technical Debt

indexes provided by tools: A pre-

liminary discussion,” in Proc. 2016

IEEE 8th Int. Workshop Managing

Technical Debt (MTD), Raleigh,

NC, pp. 28–31. doi: 10

.1109/MTD.2016.11.

6. R. Kazman et al., “A case study in locat-

ing the architectural roots of Technical

Debt,” in Proc. 37th Int. Conf. Software

Engineering (ICSE ’15), 2015, vol. 2,

179–188. doi: 10.1109/ICSE.2015.146.

7. P. Avgeriou et al., “An overview

and comparison of Technical Debt

measurement tools,” 2020. Accessed:

Feb. 27, 2020. [Online]. Avail-

able: https://www.doi.org/10.6084/

m9.figshare.12489290

8. V. Garousi, M. Felderer, and M. V.

Mäntylä, “Guidelines for including

grey literature and conducting mul-

tivocal literature reviews in software

engineering,” Inf. Softw. Technol.,

vol. 106, pp. 101–121, Feb. 2019.

doi: 10.1016/j.infsof.2018.09

.006.

9. V. Lenarduzzi, A. Sillitti, and D.

Taibi, “A survey on code analy-

sis tools for software maintenance

prediction,” in Proc. Int. Conf.

Software Engineering Defence Ap-

plications. Cham: Springer-Ver-

lag, June 2018, pp. 165–175. doi:

10.1007/978-3-030-14687-0_15.

10. “Source code analysis tools,” OWASP

Foundation, Bel Air, MD. Accessed:

Feb. 27, 2020. [Online]. Available:

https://owasp.org/www-community/

Source_Code_Analysis_Tools

11. A. Martini, T. Besker, and J. Bosch,

“Technical Debt tracking: Current

state of practice: A survey and mul-

tiple case study in 15 large organi-

zations,” Sci. Comput. Program.,

vol. 163, pp. 42–61, Oct. 2018. doi:

10.1016/j.scico.2018.03.007.

12. A. E. E. Neil, S. Stephany Bellomo,

I. Ipek Ozkaya, L. Robert, R. L.

Nord, and I. Ian Gorton, “Measure

it? Manage it? Ignore it? Software

practitioners and technical debt,”

in Proc. 2015 10th Joint Meet-

ing Foundations Software Engi-

neering (ESEC/FSE 2015). New

York: ACM, 2015, 50–60. doi:

10.1145/2786805.2786848.

CALL FOR ARTICLES
IT Professional seeks original submissions on technology
solutions for the enterprise. Topics include

•	 emerging technologies,
•	 cloud computing,
•	 Web 2.0 and services,
•	 cybersecurity,
•	 mobile computing,
•	 green IT,
•	 RFID,

•	 social software,
•	 data management and mining,
•	 systems integration,
•	 communication networks,
•	 datacenter operations,
•	 IT asset management, and
•	 health information technology.

We welcome articles accompanied by web-based demos.
For more information, see our author guidelines at
www.computer.org/itpro/author.htm.

WWW.COMPUTER.ORG/ITPRO

Digital Object Identifier 10.1109/MS.2021.3068504

Authorized licensed use limited to: Telecom SudParis (Frmly Telecom et management SudParis INT). Downloaded on April 22,2021 at 11:57:31 UTC from IEEE Xplore. Restrictions apply.

