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FOCUS: ON SOFTWARE QUALITY

TECHNICAL DEBT (TD) has grown 
to be one of the most important 
metaphors1,2 to describe develop-
ment shortcuts that are taken for 
expediency but cause the degrada-
tion of internal software quality.
The metaphor has also served well 
the discourse between engineers and 
management on how to invest re-
sources on maintenance alongside 
features and bugs.

Due to its importance, several 
tools have been released that offer 
to measure TD through static code 
analysis (the most common way 
of addressing TD). These are both 
commercial tools and research pro-
totypes. However, each tool uses 
different metrics, indices, quality 
models, static analysis rules, TD re-
mediation models, and definitions of 
the various TD concepts. This leaves 
developers baffled as to how to se-
lect the most fitting TD tool for the 
task at hand.

Moreover, many of the tools that 
proclaim themselves to be TD mea-
surement tools do not even calcu-
late a TD index (TDI) in terms of 
money or effort but simply report 
the detection of smells or other 
code issues. This poses the risk that 
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anything wrong in the code will 
be considered as TD; thus, the 
TD metaphor will be diluted and 
lose its value as a means of trans-
lating internal quality issues into 
monetary values (currency or effort) 
and risks.

Our aim is to provide an overview 
of the current landscape of TD mea-
surement tools through a set of ob-
jective criteria related to the offered 
features and their popularity. Practi-
tioners can use this overview to assess 
the tools, understand their strengths 
and weaknesses, and ultimately se-
lect the most suitable one for their 
needs. The scope of the compari-
son is limited to three specific types 
of TD—namely, code, design, and 
architecture—as they are the most 
studied types.3

We considered 26 tools and 
filtered them to select nine for 
analysis based on whether they ac-
tually measure TD, either directly 
or through a proxy. Subsequently, 
we used multiple sources to col-
lect information on their features 
and popularity, and we devised a 
set of criteria to evaluate each tool. 
To verify our findings in terms of 
correctness and completeness, we 
asked the corresponding tool ven-
dors to review them and provide us 
with feedback. 

Acknowledging that users would 
be reluctant to rely on tools that 
provide inaccurate results, we fur-
ther looked into the way these tools 
were validated in the literature, 
and we present the amount of col-
lected empirical evidence. Finally, 
to better guide practitioners, we of-
fer our own interpretation of the 
findings by discussing how to se-
lect a tool, which tools are best for 
what, which are popular in differ-
ent communities, as well as what is 
still missing.

Background
TD is a “design or implementation 
construct that is expedient in the short 
term, but sets up a technical context 
that can make a future change more 
costly or impossible” and is “limited 
to internal system qualities, primar-
ily maintainability and evolvability.”1 
TD expresses the development of 
an artifact 1) in a “quick and dirty” 
way for the sake of speeding up de-
velopment or 2) optimally but later 
rendered suboptimally because of a 
change in context (e.g., third-party li-
braries getting outdated). In any case, 
this debt may need repayment, e.g., 
through refactoring, as maintainabil-
ity and evolvability become harder. 
Many types of TD have been studied 
by researchers and academics, such as 
code, architectural, testing, and re-
quirements debt.4

The TD metaphor relies on two 
main concepts borrowed from eco-
nomics: principal and interest. Prin-
cipal refers to the cost of refactoring 
software artifacts so that they reach 
the desired level of maintainability and 
evolvability.1 Interest is the extra ef-
fort that developers spend when mak-
ing changes because of the existence of 
TD, e.g., because of code smells or un-
necessarily complex code.1 

In related work, Arcelli et al.5 
investigated in detail how TDIs are 
calculated by five tools in terms of 
both their input (e.g., code viola-
tions) and output (e.g., remediation 
cost). Results showed that not all 
tools use architectural information, 
while the estimation of remediation 
costs relied predominantly on static 
analysis. However, to the best of our 
knowledge, there is no comprehen-
sive comparison of the available TD 
tools, especially taking into account 
the overall set of offered features and 
their popularity among practitioners 
and researchers.

Setting the Stage
To systematically perform the tool 
comparison, we have set up an em-
pirical study comprising five steps. 

Identifying Relevant Tools 
For the first step, identifying relevant 
tools, we performed an academic lit-
erature search and a web search.

• Literature search: We relied 
on the IEEE Xplore and ACM 
Digital Library search engines. 
Our search string was applied 
on the title and abstract and had 
the following form: “technical 
debt” AND (“measurement” or 
“assessment” or “estimation”) 
AND (“tool” or “platform”). We 
gathered the studies that resulted 
from the aforementioned search 
and filtered out those that nei-
ther introduced nor mentioned 
any TD tool. We then checked 
the articles that cited them (for-
ward snowballing).

• Web search: We used major 
search engines, such as Google, 
Bing, and Yahoo, using the same 
query as in the literature search. 
The results led us either to the 
landing pages of the websites of 
companies that own the tools or 
to articles introducing tools for 
assessing TD.

We note that, although many syn-
onyms (or near synonyms) of TD 
could be used in the search string, 
we opted not to broaden it using 
terms similar to TD symptoms or 
remediation actions, such as refac-
torings, code smells, antipatterns, 
and so on. This could lead to multi-
ple narrow-scoped tools that would 
be excluded later because they do 
not aim at estimating the effort 
required to eliminate the identi-
fied inefficiencies.
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To ensure we did not miss relevant 
tools, we manually cross-checked 
with 1) the tool demo sessions of the 
first and second International Con-
ference on TD in 2018 and 2019, re-
spectively, and 2) all tools mentioned 
in a tertiary study on TD manage-
ment.3 No additional tools were iden-
tified through the cross-check. The 
complete list of tools from this step is 
available in the replication package.

Tool Filtering
For the second step, tool filtering, we 
checked the aforementioned list of 
tools against the following criteria.

• Inclusion criterion: The tool cal-
culates an aggregate measure of 
the system’s TD principal and/or 
interest either directly (in terms 
of money or effort) or as a proxy 
based on static code analysis.

• Exclusion criterion: The tool is 
not accessible; e.g., it is not able 
to be downloaded or installed, 
lacks documentation for installa-
tion/deployment, or has an inac-
tive website.

The inclusion criterion ensures that 
the selected tools match the scope 
of the article: they actually estimate 
the key concepts of the TD metaphor 
(interest and principal). Tools that 
identify code smells, without any as-
sessment of the time that is required 
to resolve them, fail this criterion. 

As a proxy for the TD principal 
and interest, we refer to any measure 
that does not directly represent these 
quantities but is correlated to them.  
For example, DV8 does not provide 
a complete TD interest index, but 
an accompanying study6 explains 
how the extra time spent on fixing 
bugs due to the presence of TD was 
used as a proxy for TD interest. Af-
ter applying the inclusion/exclusion 

criteria, nine tools were retained for 
data extraction (see Table 1).

Tool Assessment Criteria
For the third step, tool assessment 
criteria, we performed a focus group 
discussion (among the authors of 
this article) to derive a set of criteria 
that can be used by practitioners to 
assess the strengths and weaknesses 
of each solution. The selected crite-
ria can be classified into three main 
groups: features, popularity, and 
validation. The offered features were 
collected by inspecting the docu-
mentation and websites of the tools 
and by trying them out (whenever 
a demo license was available). The 
major criteria are shown in Table 1. 
(See the replication package7 for the 
full set of 18 criteria.)

We worked in groups of either 
two or three researchers to collect 
data, whereas we discussed in ple-
nary how to classify calculated mea-
sures into principal and interest. 
The second group of criteria refers 
to the industrial and research pop-
ularity of the tools. We evaluated 
popularity in terms of how often the 
tools are mentioned in public on-
line sources. The following sources 
were investigated:

• Online media: We examined 
a number of channels used by 
practitioners to share informa-
tion online (posts, tags, users, 
groups, or websites pertaining 
to the tools). In particular, we 
searched the tools’ own com-
munities, LinkedIn and Google 
groups, as well as the number of 
appearances in commonly used 
communities and discussion 
forums, such as StackOverflow, 
Reddit, DZone, and Medium.

• Scientific literature: We used 
Google Scholar and Scopus to 

investigate the popularity of 
each tool by applying the follow-
ing search string on all fields in-
cluding the title, abstract, body, 
and references: (“tool_Name” 
or “tool_url”) and “Technical 
Debt.” In the case of tools with 
different names (e.g., CAST), we 
considered all variants in the or 
term, e.g., (“CAST software” 
or “Castsoftware” or “CAST 
AIP”). Two authors indepen-
dently evaluated the relevance 
of each publication reported by 
Google Scholar and Scopus so as 
to exclude non-English articles, 
false positives, or articles from 
different domains. In the case of 
a disagreement, a third author 
provided his or her opinion.

Verifying Our Analysis
For the fourth step, verifying our 
analysis, we contacted the tool ven-
dors by email and asked them to 
assess the correctness of our evalu-
ation and update any data point 
that was incorrectly recorded. Dur-
ing this process, all tool vendors 
responded, and only minor correc-
tions were suggested.

Empirical Evidence on  
the Accuracy of Each Tool
For the fifth step, empirical evi-
dence on the accuracy of each tool, 
we performed a multivocal literature 
review,8 including peer-reviewed 
(Scopus and Google Scholar) and 
gray literature. In both cases, we 
applied the following search string: 
“tool_name and (evaluation or em-
pirical or validation or accuracy or 
assess*).” For the keyword “tool_
name,” we adopted the same com-
binations of keywords used for the 
popularity search. We also asked 
the tool vendors to send us any re-
lated documents. The origin of each 
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Table 1. The characteristics of the TDIs and other features in the analyzed tools.

Characteristics of the TDIs

Name  
(Release year) Type Principal Interest Index

CAST
(1998)

Architectural, 
design, and code

Time to remove issues Yes Violations × rule criticality × effort 

SonarGraph 
(2006)

Architectural 
and design

Computation of several 
metrics

No Structural debt index × minutes to fix

NDepend (2007) Architectural, 
design, and code

Estimated person time to fix 
issues 

Yes Violations × fix effort

SonarQube (2007) Code Time to remove issues No Cost to develop one line of code × number of lines of code

SQuORE (2010) Design and code Time to remove issues No No

CodeMRI (2013) Design Not estimated Yes Interest—not mentioned

Code Inspector 
(2019)

Architectural, 
design, and code

Effort needed to avoid high TD No A function of violations, duplications, and readability/
maintainability issues

DV8 (2019) Architectural Number of affected files and 
lines of code 

Yes Penalties: additional bugs and/or changes in lines of code

SymfonyInsight 
(2019)

Code Time to remove issues No Number of issues × time needed to remove the issue

Additional features

Name Platform Integration Output Other quality attributes Execute

CAST Windows Jenkins and Maven API and 
GUI

Security, efficiency, changeability,
robustness, and transferability

Asynchronous 

SonarGraph Independent Eclipse, Gradle, IntelliJ
Jenkins, Maven, and VS 

GUI Changeability Real time

NDepend Windows Azure, Jenkins, and VS GUI Changeability, robustness, and 
testability

Asynchronous

SonarQube Independent Eclipse, IntelliJ, and VS All* Security and reliability Real time

SQuORE Independent No API and 
GUI

Changeability, reliability, efficiency,
portability, security, and testability

Asynchronous

CodeMRI Windows, Linux No CLI Security, efficiency, robustness, 
portability, and testability

Asynchronous

Code Inspector Independent GitHub, GitLab, Bitbucket, 
Jenkins, and Travis

API Security, changeability, portability,
testability, and maintainability

Asynchronous

DV8 Windows and 
Mac

Depends and Jenkins GUI Maintainability, evolvability, and 
security

Real time

SymfonyInsight Independent No GUI and 
CI

Security, maintainability, and 
reliability

Asynchronous

API: application programming interface; CI: continuous integration; CLI: command line interface; GUI: graphical user interface; VS: Visual Studio.
*All refers to API, GUI, CLI, and CI.
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article (peer reviewed, gray litera-
ture, or from a vendor) is referenced 
in the replication package.

Findings on Features
Table 1 reports our key findings 
re   garding the tools selected for com-
parison. (Tools are sorted in chrono-
logical order.) The table comprises 
two parts: 1) the characteristics 
of the different TDIs and 2) addi-
tional tool features (such as export, 
integration with other tools, and 
customizability).

For every index, we look into the 
interest, principal, and measurement 
method (which factors are used to 
compute the index value). Interest-
ingly, not all of the tools consider the 
interest, but all (except CodeMRI) 
compute the principal. The latter is 
usually identified with a heuristic 
based, in some cases, on software 
metrics and, in other cases, on the 
effort needed to fix the identified 
software violations, expressed in 
either effort (in minutes) or mon-
etary form.

In general, every selected tool is 
able to inspect both sources and bi-
naries of a given software project and 
analyze at different granularity levels: 
project, package, class, method, and 
line of code. The analysis usually re-
sults in the identification of violations 
and anomalies, which are highlighted 
in the code through the tool’s own 
user interface or in the IDEs that sup-
port plug-ins for six out of nine of the 
analyzed tools.

All tools have different degrees 
of customization. All of the tools 
in the study allow developers to se-
lect the rules for the analysis. In ad-
dition, five tools (CAST, NDepend, 
SonarGraph, CodeMRI, and So-
narQube) allow users to add rules 
(e.g., define a new metric) and cus-
tomize their thresholds. One tool 

(SymfonyInsight) allows only cus-
tomization of the thresholds, and 
two tools (Code Inspector and DV8) 
do not allow users to add rules or 
customize thresholds. Finally, all of 
the tools, except NDepend and Co-
deMRI, allow the creation of new 
plug-ins.

Furthermore, all tools address 
additional quality attributes. We re-
port the names of the qualities as 
reported by the vendors in Table 1, 
and we also provide a mapping to 
the software quality standards that 
the qualities refer to in the replica-
tion package.7

Findings on Popularity
In Figure 1(b), we report the results 
related to the popularity of the tools 
in the Stack Overflow, LinkedIn, 
and Google groups as well as other 
popular sites, such as Reddit, Dzone, 
and Medium. Search strings and raw 
data are available online in the repli-
cation package.7 Please note that the 
results are normalized against the 
number of years since the introduc-
tion of each tool.

SonarQube is by far the most 
popular tool, and it is visible in all 
of the channels. In most cases, NDe-
pend comes in second, being pres-
ent in all of the channels as well but 
with lower magnitude than Sonar-
Qube. SonarGraph covers almost 
all channels, although with fewer 
hits than NDepend and SonarQube, 
while it does not have tags in Stack 
Overflow. CAST scores only a few 
hits in Stack Overflow and other 
channels, while it has a large com-
munity on LinkedIn compared to 
the other tools (although it is still 
second after SonarQube). Finally, 
DV8, CodeInspector, CodeMRI, 
SQuORE, and SymfonyInsight are 
the least popular tools, with only a 
handful of posts.

As for the popularity in the scien-
tific literature [the radial bar charts 
in Figure 1(a)], SonarQube and 
CAST are clearly the most popular 
tools, matching the results reported 
earlier (see Lenarduzzi et al9). Com-
bining the findings from the research 
literature and online media, it is 
clear that SonarQube is the most 
popular tool, whereas the results 
for CAST and SonarGraph are com-
parable. In the case of NDepend, it 
seems to be more popular in indus-
try than academia.

Findings on Validation
Applying the search string returned 
a total of 5,313 publications. Next, 
we filtered the obtained studies 
based on their relevance to TD and, 
in particular, to the evaluation of the 
proposed indices for TD principal or 
interest, obtaining a list of 122 ar-
ticles for a more detailed inspection. 
As a final step of study inclusion/ex-
clusion, we proceeded to a full-text 
reading, through which we excluded 
72 additional studies as irrelevant.

The data extraction was per-
formed on the remaining 50 studies. 
These articles were classified based on 
the relevance of the empirical evalua-
tion. A full relevance point was given 
to articles that evaluate the TD prin-
cipal or interest index with respect to 
its accuracy of measurement in terms 
of the used unit (i.e., effort or money); 
a partial point was assigned to articles 
that assess the relation of TD princi-
pal or interest index to other qualities 
(e.g., maintainability, reliability, and 
so on). This aligns with the scope of 
this article, i.e., the ability of the tools 
to provide indices for TD principal 
and/or interest. All raw data extracted 
during this process are available in the 
replication package.

As shown in Figure 1(c), Sonar-
Qube is the tool whose measures 
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have been considered more in em-
pirical evaluations, followed by DV8 
and CAST. However, regarding the 
accuracy of the TDI, only DV8, So-
narGraph, and SonarQube have 
been considered in empirical stud-
ies. Based on these results, we find 
that TD quantification in units of 

effort is still lacking empirical vali-
dation in terms of its accuracy; this 
may lead to practitioners not having 
full confidence in the remediation 
effort and order proposed. How-
ever, we argue that the existing tools 
can be safely used for TD refactor-
ing, since they are able to identify 

TD items in some meaningful (and 
actionable) way.

Discussion

How to Select a Tool 
There is no clear “winner” that 
is the best option for all uses and 

FIGURE 1. An infographic depicting the (a) popularity in the scientific literature (radial bar charts normalized per tool), (b) popularity 

on the web (chord chart), and (c) empirical validation of TD tools in the literature (Sankey diagram). All values in the radial diagrams and 

chord chart are in number of hits divided by the number of years.

(a) (b)

(c)
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organizations—different tools bet-
ter fit various purposes. We provide 
some tips on how teams can select a 
tool according to their needs.

First, it is important to think 
whether the measurement of TD 
principal and interest (or at least 
their proxies) is required to perform 
TD analysis. Some teams may sim-
ply require tools that analyze their 
codebase to find code smells and 
calculate quality metrics; numer-
ous tools serve this purpose.10 If, 
however, principal and interest are 
a “must have,” as indicated in re-
cent studies in several companies,11

one should restrict the selection to 
the tools reported in this article. The 
tools listed in Table 1 calculate prin-
cipal and interest differently; we ad-
vise teams to choose tools based on 
what helps them the most to priori-
tize refactoring.

Next, individual developers usu-
ally need tools that measure code 
debt only, but when the analysis in-
volves larger or multiple teams, then 
tools analyzing the architectural 
debt are highly recommended. Other 
contextual factors that are useful to 
narrow down the selection of a tool 
include languages, IDEs, platforms, 
the license, and the architecture 
(server or client side). Finally, the in-
volvement of tools in research arti-
cles might provide practitioners with 
further insights on the reliability of 
the studied tools—in some cases, 
supported by empirical evidence.

Which Tools Are Best for What? 
All tools (but one) calculate princi-
pal, but only four of them calculate 
interest—NDepend, CAST, DV8, 
and CodeMRI—so these should 
be the tools of choice for develop-
ers interested in estimating the ex-
tra maintenance effort required in 
future iterations. For practitioners 

interested in security, both CAST 
and SonarQube offer support, al-
though CAST analyzes a higher 
number of security rules. Change-
ability and, more generally speaking, 
maintainability are considered by 
all of the tools; however, the front-
runners are CAST, NDepend, and 
SQuORE, which offer elaborated 
functionality to manage maintain-
ability at multiple levels through 
advanced features, such as custom 
component dependency violation, 
dependency graph analysis, and con-
trol flow analysis.

For detailed architectural analy-
sis, CAST, NDepend, and Sonar-
Graph provide several features that 
aid the user in gauging whether the 
intended architecture of the system 
matches the actual one. Users who 
manage code bases with a plethora of 
programming languages should defi-
nitely consider SonarQube, which is 
able to analyze the largest number of 
languages (26). DV8 takes into ac-
count not just the source code of a 
specific version but also version his-
tory and issue trackers. Such an ap-
proach renders the analysis richer by 
using more sources of data to mea-
sure evolutionary coupling (coupling 
discovered via co-changes in different 
snapshots) and its interest in terms of 
penalties incurred during bug fixing; 
using historical data also strength-
ens the reliability of its results.

Which Tools Are Popular Among 
Practitioners and Researchers? 
We observed that the communities 
behind the analyzed tools differ sig-
nificantly. In particular, SonarQube 
and NDepend are the only tools dis-
cussed in the Stack Overflow com-
munity, with SonarQube being by 
far the one with the most questions 
asked and answered. The organiza-
tion behind SonarQube seems to 

invest in supporting the TD commu-
nity by creating posts, tags, and an-
swers to users’ questions. However, 
in the majority of cases, the posts are 
not explicitly related to TD but more 
related to setting up and customizing 
the tool.

Examining the communities on 
LinkedIn, numerous members dis-
cuss SonarQube and, to a lesser ex-
tent, CAST, while SonarGraph seems 
to have a small community in Google 
groups. However, the presence in 
these communities can be seen both 
as a sign of popularity but also as 
a way for the tools to create visibil-
ity for marketing purposes. In sum-
mary, SonarQube seems to have a 
strong community behind the tool, 
while NDepend and CAST are pres-
ent in selected channels as is, to a 
lesser extent, SonarGraph. The re-
maining tools do not seem to have 
an online community supporting 
them. Although popularity cannot 
be considered a quality index per se 
(less precise tools can become more 
popular due to better marketing), we 
believe that a tool that is widely used 
by practitioners inherently gives them 
some value, or it would not be used 
and discussed at all.

What Is Still Missing? 
First, all analyzed tools quantify the 
level of maintainability issues (i.e., 
the principal), but not all tools fo-
cus on the consequence of these is-
sues (i.e., the interest). This weakens 
the use of TD as a communication 
medium: practitioners can commu-
nicate the existence of the problem 
(principal), but they do not have 
numbers on extra maintenance costs 
(interest) nor the probability of ad-
ditional maintenance (interest prob-
ability) to argue about repaying TD. 
It is crucial that all dimensions of the 
TD metaphor are represented.
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Second, all analyzed tools but one 
(DV8) consider only static analysis in 
their TD calculation models. How-
ever, current software development 
practices entail additional rich sources 
of information (e.g., version history, 
issue trackers, email exchanges, and 
so on); these can be exploited for im-
proving the accuracy of indicators or 
providing different perspectives.

Third, all tools focus on a limited 
set of types of TD: they work pre-
dominantly on code TD, to a lesser 
extent on design debt, and in a rather 
limited sense on architectural debt. 
This is not a coincidence: code and 
design debt are the easiest types to 
detect and, usually, repair. However, 
we argue that architectural debt has 
a much larger impact on maintenance 
efforts than other types.12 

Last but not least, there is no com-
monly agreed on and validated set of 
rules and metrics for measuring TD. 
Instead, each tool uses its own set of 
rules and metrics without detailed ex-
planation or motivation. Thus, there 
might exist discrepancies among the 
tools regarding the rules and output 
remediation time, and this creates 
confusion about which rules are im-
portant and how to customize their 
severity to match one’s needs.

Limitations
The results of this article are subject 
to some limitations. The first one is 
the narrow search string we applied. 
We are aware that using different syn-
onyms or relaxing the search string 
might have yielded more results. How-
ever, we aimed at using the terminol-
ogy adopted by the TD community. 
The choice of our inclusion/exclusion 
criteria also affected the selection of 
tools. We have aligned the inclusion 
criteria with the scope of the article; 
thus, only tools that directly or indi-
rectly measure TD were included.

As for data extraction, different 
researchers collected the informa-
tion for different tools and, there-
fore, possibly obtained information 
differently. We mitigated this threat 
by first assigning data collection 
per tool to at least two researchers 
with experience on that tool; any 
differences in opinion among them 
were discussed and resolved. Subse-
quently, the tool vendors were asked 
to inspect the results. 

Furthermore, the online popular-
ity of the tools could be biased by the 
activity of their respective commu-
nities: we compared the number of 
posts and not the number of tool us-
ers. Some tools may have very active 
but small communities; others may be 
widely used but not largely discussed 
online. In addition, for some tools, 
the discussion may happen elsewhere, 
such as in mailing lists or forums. 

The results rely mostly on quan-
titative indicators to provide useful 
insights about the tools, but we warn 
against using such numbers as an 
absolute way to assess their quality.  
To mitigate this limitation, we have 
added an extensive discussion based 
on the researchers’ qualitative inter-
pretation gathered during the assess-
ment procedure.

Finally, despite our best efforts, 
our personal experience using the 
analyzed tools might have biased 
the data analysis. Specifically, we 
have extensive experience with So-
narQube (18 published articles) and 
some familiarity with CAST (3 ar-
ticle), SonarGraph (2 articles), and 
SQuORE (1 ar t icle); we had no 
background with the other tools. 
We mitigated this by collecting ob-
jective data instead of user opinions 
and by making all of the data for 
this study freely available online to 
allow other researchers to replicate 
this article.7 

I n this article, we highlighted the 
current state of the market for 
TD tools, focusing on those pro-

viding an estimation of TD princi-
pal and/or interest. These tools have 
been selected through a rigorous 
process and were analyzed regard-
ing their offered features, popular-
ity, and accompanying evidence.

The studied tools offer a com-
prehensive variety of functionalities 
that cover multiple languages, levels 
of analysis, and artifacts as well as 
different computations of TD princi-
pal and interest. They can, to some 
extent, identify, measure, and moni-
tor TD as well as provide suggestions 
for repayment. More importantly, 
they support the communication of 
TD through monetary values, both 
horizontally among the technical 
teams and vertically between the 
technical and management teams.

Our analysis offers practitioners 
a clearer overview of the current 
landscape of TD tools and high-
lights their differences in offered 
features, popularity, and empirical 
validation as well as current short-
comings. Our results allow the 
tools to be compared against each 
other so that an informed choice 
can be made on which one best 
suits the needs of individual devel-
opers or their teams. 

As a follow-up to this article, we 
plan to conduct a user study with 
practitioners to compare the tools 
based on concrete TD management 
tasks. This would complement the 
current study with information on 
the usability and usefulness of the 
tools. 
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